// Numbas version: finer_feedback_settings {"name": "Equations of parallel lines", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "
Parallel lines are defined as lines that remain the same distance apart and so they never meet. This means that their gradient is the same.
\nIf we write our line equations in the form $y_i=m_i\\times x_i+c_i$, then for parallel lines, $m_1=m_2$.
\nVertical lines are always parallel to the $y$-axis and horizontal lines are always parallel to the $x$-axis.
\nAll but one of the straight lines above follow the general formula $y=mx+c$ where $m$ is a constant denoting the gradient of the line and $c$ is a constant denoting the $y$-intercept of the line.
\nThe gradient (given by $m$), indicates the slope of a straight line. Where this is positive, the $y$-coordinate along the line increases by $m$ for every increase in the value of $x$ by $1$. For example, $y=3x$ indicates that for every increase in the value of $x$ by $1$, the value of $y$ increases by $3$. Where there is no $m$ (i.e. $y=c$), the line is horizontal as the value of $y$ has no dependence on the value of $x$.
\nThe $y$-intercept (given by $c$), indicates the point where the line passes through the $y$-axis. If the line equation has no $c$ (i.e. $y=mx$), the line has a $y$ intercept of $0$ (passing through the origin).
\nWe can use our knowledge of the slope of the line and the $y$-intercept to then judge which points on the graph correspond to which equations.
\nA:
\n$y=\\simplify{{m1}x+{c1}}$ gives us $m=\\var{m1}$ and $c=\\var{c1}$.
\nB:
\n$y=\\simplify{{m2}x+{c2}}$ gives us $m=\\var{m2}$ and $c=\\var{c2}$.
\nC:
\n$y=\\simplify{{m3}x+{c3}}$ gives us $m=\\var{m3}$ and $c=\\var{c3}$.
\nD:
\n$y=\\simplify{{c4}}$ gives us $m=0$ and $c=\\var{c1}$.
\nE:
\n$x=\\var{c5}$ is the exception to the $y=mx+c$ form of writing straight line equations. This equation gives a value for $x$ independent of the value of $y$, so a vertical line is formed at the $x$-coordinate $\\var{c5}$.
\nFor the equation $y=\\var{cfake}$, the gradient is $0$, so we check our lines $A_0, B_0, C_0, D_0 \\text{ and }E_0$ to find $D_0$ has the same gradient. Therefore $D_0$ is parallel to $y=\\var{cfake}$.
\nFor the equation $y=\\var{m1}x+\\var{cpar}$, the gradient is $\\var{m1}$, so we check our lines $A_0, B_0, C_0, D_0 \\text{ and }E_0$ to find both $A_0$ and $B_0$ have the same gradient. Therefore $A_0$ and $B_0$ are parallel to $y=\\var{m1}x+\\var{cpar}$.
\nThis time, we have to find the gradient of the $x$-axis. Note that the $x$-axis is equivalent to the line with equation $y=0$. The gradient of this line is $0$, so we check our lines $A_0, B_0, C_0, D_0 \\text{ and }E_0$ to find $D_0$ has the same gradient. Therefore $D_0$ is parallel to $y=0$ and in other words, $D_0$ is parallel to the $x$-axis.
\nFor the equation $y=\\simplify{{muniq}x+{c1}}$, the gradient is $\\var{muniq}$, so we check our lines $A_0, B_0, C_0, D_0 \\text{ and }E_0$ to find none have the same gradient. Therefore none of the labelled lines are parallel to $y=\\simplify{{muniq}x+{c1}}$.
\nLines that are parallel have the same gradient. This is represented by $m$ in the general form of a straight line ($y=mx+c$). The gradient of $C_0$ was $\\var{m3}$, so any straight line parallel to $C_0$ will share this value for $m$.
\nTherefore, we input $y=\\var{m3}x+c$.
", "statement": "Use the graph bellow to wok out the line equations of lines $A_0 \\text{ to } E_0$ and use these equations to judge which lines they are parallel to.
\n{geogebra_applet('WuavQqEG',[[\"m1\",m1],[\"m2\",m2],[\"m3\",m3],[\"c1\",c1],[\"c2\",c2],[\"c3\",c3],[\"c4\",c4],[\"c5\",c5],[\"f1\",f1],[\"d1\",d1],[\"a1\",a1],[\"b1\",b1]])}
", "variables": {"cpar": {"name": "cpar", "group": "intercept", "templateType": "anything", "description": "", "definition": "random(500..750)"}, "m1": {"name": "m1", "group": "Gradient", "templateType": "anything", "description": "", "definition": "random(1..2#0.1)"}, "c4": {"name": "c4", "group": "intercept", "templateType": "anything", "description": "", "definition": "random(3..6)"}, "c5": {"name": "c5", "group": "intercept", "templateType": "anything", "description": "", "definition": "random(14..17)"}, "cfake": {"name": "cfake", "group": "intercept", "templateType": "anything", "description": "", "definition": "random(-8..-3)"}, "m3": {"name": "m3", "group": "Gradient", "templateType": "anything", "description": "", "definition": "random(-2..-1#0.1)"}, "c3": {"name": "c3", "group": "intercept", "templateType": "anything", "description": "", "definition": "random(1..5)"}, "a1": {"name": "a1", "group": "Point variables(removed)", "templateType": "anything", "description": "", "definition": "30"}, "muniq": {"name": "muniq", "group": "Gradient", "templateType": "anything", "description": "", "definition": "random(10..50 except m1 m2 m3 mfake)"}, "c10": {"name": "c10", "group": "Point variables(removed)", "templateType": "anything", "description": "", "definition": "-30/m3"}, "m2": {"name": "m2", "group": "Gradient", "templateType": "anything", "description": "", "definition": "m1"}, "b1": {"name": "b1", "group": "Point variables(removed)", "templateType": "anything", "description": "", "definition": "25"}, "c2": {"name": "c2", "group": "intercept", "templateType": "anything", "description": "", "definition": "random(15..20)"}, "c1": {"name": "c1", "group": "intercept", "templateType": "anything", "description": "", "definition": "random(-10..-5)"}, "f1": {"name": "f1", "group": "Point variables(removed)", "templateType": "anything", "description": "", "definition": "-40"}, "mfake": {"name": "mfake", "group": "Gradient", "templateType": "anything", "description": "", "definition": "random(-4..-1)"}, "d1": {"name": "d1", "group": "Point variables(removed)", "templateType": "anything", "description": "", "definition": "60"}}, "tags": ["definition of parallel lines", "definitions", "equations of parallel lines", "parallel lines", "taxonomy"], "ungrouped_variables": [], "functions": {}, "name": "Equations of parallel lines", "preamble": {"js": "", "css": ""}, "extensions": ["geogebra"], "type": "question", "variable_groups": [{"variables": ["m1", "m2", "m3", "mfake", "muniq"], "name": "Gradient"}, {"variables": ["c1", "c2", "c3", "c4", "c5", "cfake", "cpar"], "name": "intercept"}, {"variables": ["a1", "b1", "c10", "d1", "f1"], "name": "Point variables(removed)"}], "rulesets": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "metadata": {"description": "Some conceptual questions about parallel lines - fill in the gaps in some statements.
\nIdentify the lines corresponding to given equations, and the lines parallel to lines with given equations.
\n", "licence": "Creative Commons Attribution 4.0 International"}, "parts": [{"scripts": {}, "showCorrectAnswer": true, "gaps": [{"variableReplacements": [], "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "displayType": "dropdownlist", "matrix": ["1", 0, 0, 0, 0], "scripts": {}, "displayColumns": 0, "showCorrectAnswer": true, "distractors": ["", "", "", "", ""], "shuffleChoices": true, "marks": 0, "type": "1_n_2", "choices": ["the same
", "a variable
", "a large
", "a small
", "a negligible
"], "showFeedbackIcon": true, "minMarks": 0}, {"variableReplacements": [], "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "displayType": "dropdownlist", "matrix": ["1", 0, 0, 0, 0, 0], "scripts": {}, "displayColumns": 0, "showCorrectAnswer": true, "distractors": ["", "", "", "", "", ""], "shuffleChoices": true, "marks": 0, "type": "1_n_2", "choices": ["gradient
", "$y$-intercept
", "length
", "color
", "$y$-coordinate
", "$x$-coordinate
"], "showFeedbackIcon": true, "minMarks": 0}, {"variableReplacements": [], "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "displayType": "dropdownlist", "matrix": ["1", 0, 0, 0], "scripts": {}, "displayColumns": 0, "showCorrectAnswer": true, "distractors": ["", "", "", ""], "shuffleChoices": false, "marks": 0, "type": "1_n_2", "choices": ["m\u2081
", "c\u2081
", "x\u2081
", "y\u2081
"], "showFeedbackIcon": true, "minMarks": 0}, {"variableReplacements": [], "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "displayType": "dropdownlist", "matrix": ["1", 0, 0, 0], "scripts": {}, "displayColumns": 0, "showCorrectAnswer": true, "distractors": ["", "", "", ""], "shuffleChoices": false, "marks": 0, "type": "1_n_2", "choices": ["m\u2082
", "c\u2082
", "x\u2082
", "y\u2082
"], "showFeedbackIcon": true, "minMarks": 0}, {"variableReplacements": [], "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "displayType": "dropdownlist", "matrix": ["0", "1", 0, 0], "scripts": {}, "displayColumns": 0, "showCorrectAnswer": true, "distractors": ["", "", "", ""], "shuffleChoices": false, "marks": 0, "type": "1_n_2", "choices": ["the x-axis
", "the y-axis
", "y=x
", "nothing
"], "showFeedbackIcon": true, "minMarks": 0}, {"variableReplacements": [], "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "displayType": "dropdownlist", "matrix": ["1", 0, 0, 0], "scripts": {}, "displayColumns": 0, "showCorrectAnswer": true, "distractors": ["", "", "", ""], "shuffleChoices": false, "marks": 0, "type": "1_n_2", "choices": ["the x-axis
", "the y-axis
", "y=x
", "nothing
"], "showFeedbackIcon": true, "minMarks": 0}], "type": "gapfill", "prompt": "Fill in the gaps below to complete the description of parallel lines.
\nParallel lines are defined as a lines that remain [[0]] distance apart and so they never meet. This means that their [[1]] is the same.
\nIf we write our line equations in the form $y=m_i\\times x_i+c_i$, then for parallel lines, [[2]] $=$ [[3]].
\nVertical lines are always parallel to [[4]] and horizontal lines are always parallel to [[5]].
", "marks": 0, "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}, {"variableReplacements": [], "maxMarks": 0, "minMarks": 0, "minAnswers": 0, "answers": ["$A_0$
", "$B_0$
", "$C_0$
", "$D_0$
", "$E_0$
", "None of these
"], "displayType": "radiogroup", "warningType": "none", "layout": {"expression": "", "type": "all"}, "choices": ["$y=\\simplify{{m1}x+{c1}}$
", "$y=\\simplify{{m2}x+{c2}}$
", "$y=\\simplify{{m3}x+{c3}}$
", "$y=\\var{c4}$
", "$x=\\var{c5}$
", "$y=\\simplify{{mfake}x+{cfake}}$
"], "scripts": {}, "showCorrectAnswer": true, "type": "m_n_x", "maxAnswers": 0, "shuffleChoices": true, "marks": 0, "prompt": "Use the graph above to match the correct line to each equation.
", "matrix": [["1", 0, 0, 0, 0, 0], [0, "1", 0, 0, 0, 0], [0, 0, "1", 0, 0, 0], [0, 0, 0, "1", 0, 0], [0, 0, 0, 0, "1", 0], [0, 0, 0, 0, 0, "1"]], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "shuffleAnswers": false}, {"variableReplacements": [], "maxMarks": 0, "minMarks": 0, "variableReplacementStrategy": "originalfirst", "displayType": "checkbox", "warningType": "none", "matrix": [0, 0, 0, "1", 0, 0], "scripts": {}, "displayColumns": 0, "showCorrectAnswer": true, "distractors": ["", "", "", "", "", ""], "maxAnswers": 0, "shuffleChoices": false, "marks": 0, "prompt": "Which lines are parallel to the line with equation $y=\\var{cfake}$?
", "type": "m_n_2", "choices": ["$A_0$
", "$B_0$
", "$C_0$
", "$D_0$
", "$E_0$
", "None of these
"], "showFeedbackIcon": true, "minAnswers": 0}, {"variableReplacements": [], "maxMarks": "1", "minMarks": "0", "variableReplacementStrategy": "originalfirst", "displayType": "checkbox", "warningType": "none", "matrix": ["1/2", "1/2", 0, "0", 0, 0], "scripts": {}, "displayColumns": 0, "showCorrectAnswer": true, "distractors": ["", "", "", "", "", ""], "maxAnswers": 0, "shuffleChoices": false, "marks": 0, "prompt": "Which lines are parallel to the line with equation $y=\\var{m1}x+\\var{cpar}$?
", "type": "m_n_2", "choices": ["$A_0$
", "$B_0$
", "$C_0$
", "$D_0$
", "$E_0$
", "None of these
"], "showFeedbackIcon": true, "minAnswers": 0}, {"variableReplacements": [], "maxMarks": 0, "minMarks": 0, "variableReplacementStrategy": "originalfirst", "displayType": "checkbox", "warningType": "none", "matrix": ["0", "0", 0, "2", "0", 0], "scripts": {}, "displayColumns": 0, "showCorrectAnswer": true, "distractors": ["", "", "", "", "", ""], "maxAnswers": 0, "shuffleChoices": false, "marks": 0, "prompt": "Which lines are parallel to the $x$ axis?
", "type": "m_n_2", "choices": ["$A_0$
", "$B_0$
", "$C_0$
", "$D_0$
", "$E_0$
", "None of these
"], "showFeedbackIcon": true, "minAnswers": 0}, {"variableReplacements": [], "maxMarks": 0, "minMarks": 0, "variableReplacementStrategy": "originalfirst", "displayType": "checkbox", "warningType": "none", "matrix": ["0", "0", 0, "0", "0", "1"], "scripts": {}, "displayColumns": 0, "showCorrectAnswer": true, "distractors": ["", "", "", "", "", ""], "maxAnswers": 0, "shuffleChoices": false, "marks": 0, "prompt": "Which lines are parallel to the line with the equation $y=\\simplify{{muniq}x+{c1}}$?
", "type": "m_n_2", "choices": ["$A_0$
", "$B_0$
", "$C_0$
", "$D_0$
", "$E_0$
", "None of these
"], "showFeedbackIcon": true, "minAnswers": 0}, {"scripts": {}, "showCorrectAnswer": true, "gaps": [{"vsetrange": [0, 1], "scripts": {}, "variableReplacements": [], "expectedvariablenames": [], "answer": "{m3}", "variableReplacementStrategy": "originalfirst", "checkingtype": "absdiff", "showCorrectAnswer": true, "type": "jme", "marks": 1, "showpreview": true, "vsetrangepoints": 5, "checkvariablenames": false, "checkingaccuracy": 0.001, "showFeedbackIcon": true}], "type": "gapfill", "prompt": "Complete the general equation in the form $y=mx+c$ for any line parallel to line $C_0$.
\n$y=$[[0]]$x+c$
", "marks": 0, "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Bradley Bush", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1521/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Bradley Bush", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1521/"}]}