// Numbas version: exam_results_page_options {"name": "Graphing logarithms of the form y=log_{b}(x) with b>1", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["b"], "variablesTest": {"maxRuns": 100, "condition": ""}, "advice": "

This question assumes you understand the definition and the laws of logarithms.

\n

a) To find the \$x\$-intercept, substitute \$y=0\$ into the equation: \$0=\\log_{\\var{b}}(x)\$ which is equivalent to \$\\var{b}^0=x\$, i.e. \$x=1\$. Therefore, the \$x\$-intercept is the point \$(1,0)\$.

\n

b) Substitute \$y=1\$ into the equation: \$1=\\log_{\\var{b}}(x)\$ which is equivalent to \$\\var{b}^1=x\$, i.e. \$x=\\var{b}\$. Therefore, another easily found point is \$(\\var{b},1)\$.

\n

c) Let's investigate what happens to the value of \$y\$ when the value of \$x\$ is increased by a factor of \$\\var{b}\$:

\n

\\[\\log_{\\var{b}}(\\var{b}x)=\\log_{\\var{b}}(\\var{b})+\\log_{\\var{b}}(x)=1+\\log_{\\var{b}}(x)\\]

\n

This is the old \$y\$ value plus 1, so we can say that \$y\$ is increased by 1.

\n

d) As \$x\$ gets larger and larger, \$y\$ gets larger and larger. Even though the rate of increase slows, \$y\$ continues to grow without bound.

\n

e) An asymptote is a line or curve that approaches a given curve arbitrarily closely. For the curve \$y=\\log_{\\var{b}}(x)\$ the closer \$x\$ gets to zero (approaching from the right), the smaller \$y\$ gets (without bound). In other words, as \$x\$ approaches \$0\$ from the right, \$y\$ approaches negative infinity. This means that the asymptote for \$y=\\log_{\\var{b}}(x)\$ is the line \$x=0\$ (the \$y\$-axis).

\n

f) Given all the information above, it should be clear that the graph should look like

\n

{graph1(1)}

The easiest type of exponential to graph where the base is greater than 1 and no transformations take place.

The \$x\$-intercept of \$y=\\log_{\\var{b}}(x)\$ is the point \$\\large(\$[[0]], [[1]]\$\\large)\$.

", "variableReplacementStrategy": "originalfirst"}, {"showCorrectAnswer": true, "gaps": [{"mustBeReducedPC": 0, "variableReplacements": [], "mustBeReduced": false, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "maxValue": "{b}", "marks": 1, "type": "numberentry", "correctAnswerFraction": true, "showFeedbackIcon": true, "minValue": "{b}", "scripts": {}, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "allowFractions": true}], "variableReplacements": [], "type": "gapfill", "marks": 0, "showFeedbackIcon": true, "scripts": {}, "prompt": "

Another easily found point on the curve is \$\\large(\$[[0]], \$\\large1 )\$.

", "variableReplacementStrategy": "originalfirst"}, {"showCorrectAnswer": true, "gaps": [{"minMarks": 0, "variableReplacements": [], "shuffleChoices": true, "showCorrectAnswer": true, "displayColumns": 0, "choices": ["

increases by 1.

", "

decreases by 1.

", "

increases by {b-1}.

", "

decreases by {b-1}.

", "

increases by a factor of {b}.

", "

decreases by a factor of {b}.

"], "marks": 0, "matrix": ["1", 0, 0, 0, "0", 0], "type": "1_n_2", "showFeedbackIcon": true, "maxMarks": 0, "scripts": {}, "displayType": "dropdownlist", "variableReplacementStrategy": "originalfirst", "distractors": ["", "", "", "", "", ""]}], "variableReplacements": [], "type": "gapfill", "marks": 0, "showFeedbackIcon": true, "scripts": {}, "prompt": "

Given \$y=\\log_{\\var{b}}(x)\$, everytime \$x\$ increases by a factor of \$\\var{b}\$, \$y\$  [[0]].

", "variableReplacementStrategy": "originalfirst"}, {"showCorrectAnswer": true, "gaps": [{"minMarks": 0, "variableReplacements": [], "shuffleChoices": true, "showCorrectAnswer": true, "displayColumns": "1", "choices": ["

\$y\$ approaches \$0\$.

", "

\$y\$ decreases without bound.

", "

\$y\$ increases without bound.

", "

\$y\$ approaches \$\\var{b}\$.

"], "marks": 0, "matrix": [0, 0, "1", 0], "type": "1_n_2", "showFeedbackIcon": true, "maxMarks": 0, "scripts": {}, "displayType": "radiogroup", "variableReplacementStrategy": "originalfirst", "distractors": ["", "", "", ""]}], "variableReplacements": [], "type": "gapfill", "marks": 0, "showFeedbackIcon": true, "scripts": {}, "prompt": "

As \$x\$ increases without bound, [[0]]

", "variableReplacementStrategy": "originalfirst"}, {"showCorrectAnswer": true, "gaps": [{"mustBeReducedPC": 0, "variableReplacements": [], "mustBeReduced": false, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "maxValue": "0", "marks": 1, "type": "numberentry", "correctAnswerFraction": false, "showFeedbackIcon": true, "minValue": "0", "scripts": {}, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "allowFractions": false}], "variableReplacements": [], "type": "gapfill", "marks": 0, "showFeedbackIcon": true, "scripts": {}, "prompt": "

The vertical asymptote of \$y=\\log_{\\var{b}}(x)\$ is \$x=\$ [[0]].

", "variableReplacementStrategy": "originalfirst"}, {"minMarks": 0, "variableReplacements": [], "shuffleChoices": true, "showCorrectAnswer": true, "displayType": "radiogroup", "choices": ["

{graph1(1)}

", "

{graph1(2)}

", "

{graph1(3)}

", "

{graph1(4)}

"], "marks": 0, "matrix": ["1", 0, 0, 0], "displayColumns": "2", "type": "1_n_2", "showFeedbackIcon": true, "maxMarks": 0, "scripts": {}, "prompt": "

Which graph best represents \$y=\\log_{\\var{b}}(x)\$?

", "variableReplacementStrategy": "originalfirst", "distractors": ["", "", "", ""]}], "preamble": {"css": "", "js": ""}, "name": "Graphing logarithms of the form y=log_{b}(x) with b>1", "extensions": ["jsxgraph"], "tags": [], "statement": "

The following questions will gauge your understanding of logarithms and how to graph them.

\n

The logarithm you will be working with for this question is \\[y=\\log_{\\var{b}}(x).\\]

\n

", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}