// Numbas version: exam_results_page_options {"name": "Calculate powers of ten", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "

When $n$ is positive, we multiply $10$ by itself $n$ times,

\n

\$\\text{e.g. } 10^3 = 10 \\times 10 \\times 10 = 1000 \\text{ .}\$

\n

When $n$ is negative, we can think of $10^{-n}$ as $\\frac{1}{10^{n}}$,

\n

\$\\text{e.g. } 10^{-3} = \\frac{1}{10^3} = \\frac{1}{1000} = 0.001\\text{ .}\$

\n

When $n = 0$:

\n

\$10^{0} = 1 \\text{ .}\$

\n

Generally, we can think of $10^n$ as a number in standard form $1 \\times 10^n$. Then $n$ always tells us the number of decimal places to move the decimal point in $1.0$, for example

\n

\$10^{-3} = 1.0 \\times 10^{-3} \\text{ and since } n = - 3 \\text{, we go } 3 \\text{ places back as follows: } 1.0 ⇒ 0.1 ⇒ 0.01 ⇒ 0.001 \\text{ .}\$

\n

A complete table of powers of ten for $n$ from $-6$ to $6$ is:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$n$$10^n -6$$0.000001$
$-5$$0.00001 -4$$0.0001$
$-3$$0.001 -2$$0.01$
$-1$$0.1 0$$1$
$1$$10 2$$100$
$3$$1000 4$$10000$
$5$$100000 6$$1000000$
\n

", "statement": "

Powers of ten can be useful while working with standard index numbers. Fill in the following table of powers of ten:

", "variables": {"n": {"name": "n", "group": "Ungrouped variables", "templateType": "anything", "description": "", "definition": "random(2..5)"}}, "tags": ["powers", "powers of 10", "standard index numbers", "taxonomy"], "ungrouped_variables": ["n"], "functions": {}, "name": "Calculate powers of ten", "preamble": {"js": "", "css": ""}, "extensions": [], "type": "question", "variable_groups": [], "rulesets": {}, "variablesTest": {"condition": "", "maxRuns": "1000"}, "metadata": {"description": "

Fill in a table of powers of 10.

$n$$10^n [[0]]\\var{10^(-n-1)} \\var{-n+1}[[1]] 0$$1$
$1$$10$
$\\var{n}$[[2]]
[[3]]$\\var{10^(n+2)}$