// Numbas version: finer_feedback_settings {"name": "Always, sometimes or never: square and cube numbers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Always, sometimes or never: square and cube numbers", "type": "question", "statement": "

For each of the following statements, select one option from \"Always\", \"Sometimes\" or \"Never\". 

\n

Select:

\n", "variablesTest": {"condition": "", "maxRuns": "1000"}, "variables": {"a": {"group": "Ungrouped variables", "name": "a", "description": "

This variable was created solely for the purpose of being able to publish this question.

", "templateType": "anything", "definition": "1"}}, "extensions": [], "functions": {}, "tags": ["always", "cubic numbers", "never", "sometimes", "square numbers", "taxonomy"], "variable_groups": [], "parts": [{"layout": {"expression": "", "type": "all"}, "scripts": {}, "minMarks": 0, "type": "m_n_x", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "displayType": "radiogroup", "choices": ["

i)      $x^3$ is greater than $x^2$

", "

ii)      $x^2$ is greater than $x$

", "

iii)      If $x$ is negative, $x^2$ is negative

", "

iv)      If $x$ is negative, $x^3$ is negative

", "

v)      $x^2 = x$

", "

vi)      $x^2 = - x$

", "

vii)      $(x+1)^2 \\gt x$

", "

viii)      $(x+1)^3 \\gt x$

", "

ix)      $x^3 \\times x = x^2 \\times x^2$

", "

x)      $x^2$ has the opposite sign to $x$

", "

xi)      $x^3$ has the opposite sign to $x$

"], "showFeedbackIcon": true, "answers": ["

Always

", "

Sometimes

", "

Never

"], "warningType": "none", "matrix": [["0", "1", 0], [0, "1", "0"], ["0", 0, "1"], ["1", "0", 0], ["0", "1", 0], ["0", "1", 0], ["1", "0", 0], [0, "1", 0], ["1", 0, "0"], [0, "1", 0], [0, 0, "1"]], "variableReplacements": [], "marks": 0, "maxMarks": 0, "shuffleChoices": false, "maxAnswers": 0, "minAnswers": 0, "shuffleAnswers": false}], "ungrouped_variables": ["a"], "rulesets": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Decide whether statements about square and cube numbers are always true, sometimes true or never true.

"}, "preamble": {"css": "", "js": ""}, "advice": "

i)

\n

Suppose $x$ is negative, for example $x = -5$.

\n

\\[ \\begin{align} x^2 &= (-5)^2 \\\\&= 25 \\\\ x^3 &= (-5)^3 \\\\&= -125 \\\\x^3 &\\lt x^2\\text{.} \\end{align} \\]

\n

Now let $x$ be positive, for example $x = 5$.

\n

\\[ \\begin{align} x^2 &= 5^2 \\\\&= 25 \\\\ x^3 &= 5^3 \\\\&= 125 \\\\x^3 &\\gt x^2\\text{.}\\end{align} \\]

\n

Therefore, $x^3$ is sometimes greater than $x^2$.

\n

\n

\n

ii)

\n

This is true for either $x \\gt 1$ or $x \\lt 0$ but false for $0 \\leq x \\leq 1$. For example, let $x=0.5$. Then

\n

\\[ \\begin{align} \\text{When } x &= 0.5\\text{,} \\\\x^2 &= 0.25\\text{, so} \\\\ x^2 &\\lt x \\text{.} \\end{align} \\]

\n

Therefore, $x^2$ is sometimes greater than $x$.

\n

\n

\n

iii)

\n

Multiplying two negative numbers gives a positive answer and multiplying two postive numbers gives a positive answer. Therefore, $x^2$ is never negative.

\n

\n

\n

iv)

\n

Multiplying a negative number by itself an odd number of times always gives a negative answer. For example, let $x = -1$. Then

\n

\\[\\begin{align} x^3 &= (-1)^3 \\\\&= -1\\times-1\\times-1 \\\\&=1\\times-1 \\\\&= - 1 \\text{.} \\end{align}\\]

\n

Therefore, if $x$ is negative, $x^3$ is always negative.

\n

\n

\n

v)

\n

This is true when $x = 1$ but false for all other values of $x$. Therefore, $x^2$ sometimes equals $x$.

\n

\n

\n

vi)

\n

This is true when $x = -1$ but false for all other values of $x$. Therefore, $x^2$ sometimes equals $-x$.

\n

\n

\n

vii)

\n

When $x$ is positive, for example $x = 5$:

\n

\\[ \\begin{align} (x+1)^2 &= (5 + 1)^2 \\\\&= 6^2 \\\\&= 36 \\gt x = 5 \\end{align} \\]

\n

When $x = 0$:

\n

\\[ \\begin{align} (x+1)^2 &= (0 + 1)^2 \\\\&= 1^2 \\\\&= 1 \\gt x = 0 \\end{align} \\]

\n

When $x$ is negative, such as $x = -4$:

\n

\\[ \\begin{align} (x+1)^2 &= (-4 + 1)^2 \\\\&= (-3)^2 \\\\&= 9 \\gt x = -4 \\end{align} \\]

\n

To see the behaviour of $(x+1)^2$ a bit more clearly, we make a table for values $-3 \\leq x \\leq 3$:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$x$$-3$$-2$$-1$$-0.5$$0$$0.5$$1$$2$\n

$3$

\n
$(x+1)^2$$4$$1$$0$$0.25$$1$$2.25$$4$$9$$16$
\n

Therefore, $(x+1)^2$ is always greater than $x$.

\n

\n

\n

viii)

\n

When $x$ is positive, for example $x = 5$:

\n

\\[ \\begin{align} (x+1)^3 &= (5 + 1)^3 \\\\&= 6^3 \\\\&= 216 \\gt x = 5 \\end{align} \\]

\n

When $x = 0$:

\n

\\[ \\begin{align} (x+1)^3 &= (0 + 1)^3 \\\\&= 1^3 \\\\&= 1 \\gt x = 0 \\end{align} \\]

\n

When $x$ is negative, such as $x = -4$:

\n

\\[ \\begin{align} (x+1)^2 &= (-4 + 1)^3 \\\\&= (-3)^3 \\\\&= -27 \\lt x = -4 \\end{align} \\]

\n

To see the behaviour of $(x+1)^3$ a bit more clearly, we make a table for values $-3 \\leq x \\leq 3$:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$x$$-3$$-2$$-1$$-0.5$$0$$0.5$$1$$2$\n

$3$

\n
$(x+1)^3$$-8$$-1$$0$$0.125$$1$$3.375$$8$$27$$64$
\n

Therefore, $(x+1)^3$ is sometimes greater than $x$.

\n

\n

\n

ix)

\n

We can write 

\n

\\[x^3\\times x = x \\times x \\times x \\times x = x^2 \\times x^2\\text{.}\\]

\n

Therefore, $x^3 \\times x$ always equals $x^2 \\times x^2$.

\n

\n

\n

x)

\n

Since $x^2$ is always positive, $x^2$ only has the opposite sign to $x$ when $x$ is negative. 

\n

Therefore, $x^2$ sometimes has the opposite sign to $x$.

\n

\n

\n

xi)

\n

As seen in part iv), multiplying a negative number by itself an odd number of times always gives a negative answer. It is also true that multiplying a positive number by itself an odd number of times will give a positive answer. So, $x^3$ always has the same sign as $x$, since we have an odd power.

\n

Therefore, $x^3$ never has the opposite sign to $x$.

\n

\n

", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}]}