// Numbas version: finer_feedback_settings {"name": "Basic Set Theory: fun and games with the power set", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"condition": "", "maxRuns": 100}, "preamble": {"css": "", "js": ""}, "rulesets": {}, "variable_groups": [], "extensions": [], "metadata": {"description": "
Slightly harder introductory exercises about the power set.
", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "ungrouped_variables": ["n"], "variables": {"n": {"name": "n", "description": "", "group": "Ungrouped variables", "definition": "random(0..2)", "templateType": "anything"}}, "parts": [{"failureRate": 1, "customMarkingAlgorithm": "", "unitTests": [], "type": "jme", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "checkingAccuracy": 0.001, "stepsPenalty": 0, "prompt": "$P(A)$ contains at least the elements $\\left\\{\\right\\}$ and $A$. The case where $\\left\\{\\right\\} = A$ is particularly interesting. What is $P(\\left\\{\\right\\})$?
", "checkVariableNames": false, "steps": [{"failureRate": 1, "customMarkingAlgorithm": "", "unitTests": [], "type": "jme", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "checkingAccuracy": 0.001, "prompt": "What is $\\left|\\left\\{\\right\\}\\right|$?
", "checkVariableNames": false, "customName": "", "showPreview": true, "useCustomName": false, "valuegenerators": [], "showFeedbackIcon": true, "vsetRangePoints": 5, "variableReplacements": [], "checkingType": "absdiff", "marks": 1, "scripts": {}, "showCorrectAnswer": true, "vsetRange": [0, 1], "answer": "0"}, {"failureRate": 1, "customMarkingAlgorithm": "", "unitTests": [], "type": "jme", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "checkingAccuracy": 0.001, "prompt": "Hence, what is $\\left|P(\\left\\{\\right\\})\\right|$?
", "checkVariableNames": false, "customName": "", "showPreview": true, "useCustomName": false, "valuegenerators": [], "showFeedbackIcon": true, "vsetRangePoints": 5, "variableReplacements": [], "checkingType": "absdiff", "marks": 1, "scripts": {}, "showCorrectAnswer": true, "vsetRange": [0, 1], "answer": "1"}, {"useCustomName": false, "customMarkingAlgorithm": "", "unitTests": [], "showFeedbackIcon": true, "type": "information", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "prompt": "Hence $P(\\left\\{\\right\\})$ is a set that only contains one element. But it must at least contain the element $\\left\\{\\right\\}$. Ponder this for a moment and then answer the question below, and remember that the NUMBAS syntax for $\\left\\{\\right\\}$ is set().
If $\\left|S\\right|=\\var{n}$ then what is $\\left|P(P(P(S)))\\right|$?
", "checkVariableNames": false, "steps": [{"failureRate": 1, "customMarkingAlgorithm": "", "unitTests": [], "type": "jme", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "checkingAccuracy": 0.001, "prompt": "Using the handy fact, $\\left|P(S)\\right| = 2^{\\var{n}}$.
\nUsing this handy fact again, we deduce that $\\left|P(P(S))\\right| = 2^{\\left|P(S)\\right|}$, which is
", "checkVariableNames": false, "customName": "", "showPreview": true, "useCustomName": false, "valuegenerators": [], "showFeedbackIcon": true, "vsetRangePoints": 5, "variableReplacements": [], "checkingType": "absdiff", "marks": 1, "scripts": {}, "showCorrectAnswer": true, "vsetRange": [0, 1], "answer": "2^2^{n}"}, {"useCustomName": false, "customMarkingAlgorithm": "", "unitTests": [], "showFeedbackIcon": true, "type": "information", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "prompt": "Use the handy fact yet again to determine $\\left|P(P(P(S)))\\right|$.
", "scripts": {}, "showCorrectAnswer": true, "customName": ""}], "customName": "", "showPreview": true, "useCustomName": false, "valuegenerators": [], "showFeedbackIcon": true, "vsetRangePoints": 5, "variableReplacements": [], "checkingType": "absdiff", "marks": 1, "scripts": {}, "showCorrectAnswer": true, "vsetRange": [0, 1], "answer": "2^2^2^{n}"}], "functions": {}, "statement": "We use the notation $\\left|A\\right| = n$ to mean that $A$ contains $n$ elements. This is often called the cardinality of the set. Here is a handy fact about the number of elements in a power set.
\nIf $\\left|A\\right| = n$ then $\\left|P(A)\\right| =2^n$.
\nUsing this fact, answer the following questions regarding the power set.
", "name": "Basic Set Theory: fun and games with the power set", "tags": [], "advice": "Since $P(\\left\\{\\right\\}) = 2^{\\left|\\left\\{\\right\\}\\right|} = 2^0 = 1$ we know that $P(\\left\\{\\right\\})$ is a one-element set which contains $\\left\\{\\right\\}$. There is only one possible answer
\n$ \\left\\{\\left\\{\\right\\}\\right\\}$.
\nWe construct the answer gradually. Since $\\left|S\\right| = \\var{n}$
\n