// Numbas version: finer_feedback_settings {"name": "Use the quadratic formula to solve an equation in terms of an unknown variable", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [{"variables": ["b", "c", "n2", "b_2", "c_2", "b_3"], "name": "part 2"}], "preamble": {"css": "", "js": ""}, "type": "question", "name": "Use the quadratic formula to solve an equation in terms of an unknown variable", "parts": [{"marks": 0, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showCorrectAnswer": true, "variableReplacements": [], "scripts": {}, "gaps": [{"checkingtype": "absdiff", "type": "jme", "vsetrangepoints": 5, "vsetrange": [0, 1], "showpreview": true, "answer": "({-b_3/2-sqrt(b_3^2-4*c_2)/2})k", "scripts": {}, "showFeedbackIcon": true, "checkvariablenames": false, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "marks": 1, "checkingaccuracy": 0.001, "variableReplacements": [], "expectedvariablenames": []}, {"checkingtype": "absdiff", "type": "jme", "vsetrangepoints": 5, "vsetrange": [0, 1], "showpreview": true, "answer": "({-b_3/2+sqrt(b_3^2-4*c_2)/2})k", "scripts": {}, "showFeedbackIcon": true, "checkvariablenames": false, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "marks": 1, "checkingaccuracy": 0.001, "variableReplacements": [], "expectedvariablenames": []}], "stepsPenalty": 0, "showFeedbackIcon": true, "prompt": "
Solve the equation $\\simplify {x^2+{b_3}*k*x+{c_2}k^2=0}$. Give your answer in terms of $k$. Assuming $k$ is positive, enter the lowest root first.
\n$x_1=$ [[0]]
\n$x_2=$ [[1]]
", "steps": [{"variableReplacementStrategy": "originalfirst", "type": "information", "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "scripts": {}, "showFeedbackIcon": true, "prompt": "The quadratic formula is
\n\\[{\\frac {-b\\pm\\sqrt{b^2-4\\times a\\times c}}{2a}}\\text{.}\\]
"}]}], "advice": "The quadratic formula is
\n\\[{\\frac {-b\\pm\\sqrt{b^2-4\\times a\\times c}}{2a}}\\text{.}\\]
\nWe can list our values for $a, b$ and $c$.
\n\\[\\begin{align}
a&=1\\\\
b&=\\var{b_3}k\\\\
c&=\\var{c_2}k^2
\\end{align}\\]
Then by substituting them into the quadratic formula, we obtain
\n\\[x=\\frac {-\\var{b_3}k\\pm\\sqrt{\\var{b_3}^2k^2-4\\times \\var{c_2}k^2}}{2}\\]
\nWe can then simplify this equation to
\n\\[\\begin{align}
x&=\\frac {-\\var{b_3}k\\pm k\\sqrt{\\var{b_3}^2-\\var{4c_2}}}{2}\\\\
\\end{align}\\]
\\[\\begin{align}
&=k\\left(\\frac{-\\var{b_3}}{2}\\pm \\frac {\\sqrt{\\var{b_3}^2-\\var{4c_2}}}{2}\\right)\\\\
\\end{align}\\]
\\[\\begin{align}
&=k\\left(-\\frac{\\var{b_3}}{2} \\pm\\frac{\\sqrt{\\var{(b_3^2-4c_2)}}}{2}\\right)\\\\
\\end{align}\\]
This means our possible values for $x$ in terms of $k$ are,
\n\\begin{align}
x_1 &= \\left( \\simplify[all,!noleadingminus,!collectnumbers,!simplifyfractions]{-{b_3}/2 - {sqrt(b_3^2-4c_2)}/2} \\right) k = \\var[fractionnumbers]{-b_3/2 - sqrt(b_3^2-4*c_2)/2}k \\\\
x_2 &= \\left( \\simplify[all,!noleadingminus,!collectnumbers,!simplifyfractions]{-{b_3}/2 + {sqrt(b_3^2-4c_2)}/2} \\right) k = \\var[fractionnumbers]{-b_3/2 + sqrt(b_3^2-4*c_2)/2}k
\\end{align}
The coefficients of the following equation involve the unknown value $k$. We can use the quadratic formula to find expressions for the values of $x$ in terms of $k$.
", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Factorise a quadratic expression of the form $x^2+akx+bk^2$ for $x$, in terms of $k$. $a$ and $b$ are constants.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}]}