// Numbas version: finer_feedback_settings {"name": "Harry's copy of Precedence of operators", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"showQuestionGroupNames": false, "preamble": {"css": "", "js": ""}, "functions": {}, "parts": [{"marks": 1, "correctAnswerFraction": false, "minValue": "{a+b*c}", "maxValue": "{a+b*c}", "allowFractions": false, "showPrecisionHint": false, "type": "numberentry", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "prompt": "

$\\var{a}+\\var{b} \\times\\var{c}$

", "variableReplacementStrategy": "originalfirst"}, {"marks": 1, "correctAnswerFraction": false, "minValue": "{a*b+c}", "maxValue": "{a*b+c}", "allowFractions": false, "showPrecisionHint": false, "type": "numberentry", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "prompt": "

$\\var{a} \\times \\var{b}+\\var{c}$

", "variableReplacementStrategy": "originalfirst"}, {"marks": 1, "correctAnswerFraction": false, "minValue": "{h-a2}", "maxValue": "{h-a2}", "allowFractions": false, "showPrecisionHint": false, "type": "numberentry", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "prompt": "

$\\var{h}-\\var{a2*b2} \\div \\var{b2}$

", "variableReplacementStrategy": "originalfirst"}, {"marks": 1, "correctAnswerFraction": false, "minValue": "{a*b + c-f*g}", "maxValue": "{a*b + c-f*g}", "allowFractions": false, "showPrecisionHint": false, "type": "numberentry", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "prompt": "

$\\var{a} \\times \\var{b}+\\var{c*d} \\div \\var{d} - \\var{f}  \\times \\var{g}$

", "variableReplacementStrategy": "originalfirst"}, {"marks": 1, "correctAnswerFraction": false, "minValue": "{a1-c1*d1-e1*g1}", "maxValue": "{a1-c1*d1-e1*g1}", "allowFractions": false, "showPrecisionHint": false, "type": "numberentry", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "prompt": "

$\\var{a1*b1} \\div \\var{b1}-\\var{c1} \\times \\var{d1} - \\var{e1*f1} \\div \\var{f1} \\times \\var{g1}$

", "variableReplacementStrategy": "originalfirst"}], "rulesets": {}, "statement": "

Evaluate the following expressions:

", "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "f1", "c", "b", "e1", "d", "g", "f", "h", "a1", "a2", "b1", "b2", "c2", "c1", "g1", "d1"], "type": "question", "tags": ["BEDMAS", "BIDMAS", "BODMAS", "checked2015", "Precedence of Operators", "SFY0001"], "variable_groups": [], "question_groups": [{"pickQuestions": 0, "pickingStrategy": "all-ordered", "name": "", "questions": []}], "metadata": {"notes": "", "licence": "Creative Commons Attribution 4.0 International", "description": "

Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.

"}, "variables": {"b2": {"definition": "random(2..9 except a2)", "description": "", "templateType": "anything", "name": "b2", "group": "Ungrouped variables"}, "c": {"definition": "random(2..8 except [a,b])", "description": "", "templateType": "anything", "name": "c", "group": "Ungrouped variables"}, "e1": {"definition": "random(2..6)", "description": "", "templateType": "anything", "name": "e1", "group": "Ungrouped variables"}, "b": {"definition": "random(2..11 except a)", "description": "", "templateType": "anything", "name": "b", "group": "Ungrouped variables"}, "c1": {"definition": "random(2..9 except [a1,b1])", "description": "", "templateType": "anything", "name": "c1", "group": "Ungrouped variables"}, "a": {"definition": "random(2..9)", "description": "", "templateType": "anything", "name": "a", "group": "Ungrouped variables"}, "d1": {"definition": "random(1..11 except [a1,b1,c1])", "description": "", "templateType": "anything", "name": "d1", "group": "Ungrouped variables"}, "c2": {"definition": "random(2..9 except [a2,b2])", "description": "", "templateType": "anything", "name": "c2", "group": "Ungrouped variables"}, "f": {"definition": "random(1..11 except[a,b,c,d,e])", "description": "", "templateType": "anything", "name": "f", "group": "Ungrouped variables"}, "b1": {"definition": "random(2..9 except a1)", "description": "", "templateType": "anything", "name": "b1", "group": "Ungrouped variables"}, "a2": {"definition": "random(2..9)", "description": "", "templateType": "anything", "name": "a2", "group": "Ungrouped variables"}, "d": {"definition": "random(3..7)", "description": "", "templateType": "anything", "name": "d", "group": "Ungrouped variables"}, "a1": {"definition": "random(2..9)", "description": "", "templateType": "anything", "name": "a1", "group": "Ungrouped variables"}, "h": {"definition": "random(7..15)", "description": "", "templateType": "anything", "name": "h", "group": "Ungrouped variables"}, "f1": {"definition": "random(3..7)", "description": "", "templateType": "anything", "name": "f1", "group": "Ungrouped variables"}, "g": {"definition": "random(2..9)", "description": "", "templateType": "anything", "name": "g", "group": "Ungrouped variables"}, "g1": {"definition": "random(1..9)", "description": "", "templateType": "anything", "name": "g1", "group": "Ungrouped variables"}}, "name": "Harry's copy of Precedence of operators", "advice": "

First work through the expression from left to right, evaluating any multiplications and divisions as you come to them. You should be left with an expression involving only pluses and minuses. Evaluate this expression, again working from left to right. Thus:

\n

a)

\n

$\\var{a}+\\var{b} \\times \\var{c}=\\var{a}+\\var{b*c}=\\var{a+b*c}$

\n

b)

\n

$\\var{a} \\times \\var{b}+\\var{c}=\\var{a*b}+\\var{c}=\\var{a*b+c}$

\n

c)

\n

$\\var{h}-\\var{a2*b2} \\div \\var{b2}=\\var{h}-\\var{a2}=\\var{h-a2}$

\n

d)

\n

$\\var{a} \\times \\var{b}+\\var{c*d} \\div \\var{d} - \\var{f} \\times \\var{g}=\\var{a*b}+\\var{c}-\\var{f*g}=\\var{a*b + c-f*g}$

\n

e)

\n

$\\var{a1*b1} \\div \\var{b1}-\\var{c1} \\times \\var{d1} - \\var{e1*f1} \\div \\var{f1} \\times \\var{g1}=\\var{a1}-\\var{c1*d1}-\\var{e1*g1}=\\var{a1-c1*d1-e1*g1}$

\n

", "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}]}], "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}