// Numbas version: finer_feedback_settings {"name": "Andrew's copy of Arithmetic progression: The nth term of a series", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "

The first three terms of a series are given by:  

\n

\\(\\var{a} + \\simplify{{a}+{d}} + \\simplify{{a}+2*{d}}\\,+ \\, ...........\\)

", "functions": {}, "variables": {"n": {"group": "Ungrouped variables", "name": "n", "definition": "random(4..19#1)", "templateType": "randrange", "description": ""}, "d": {"group": "Ungrouped variables", "name": "d", "definition": "random(2..11#1)", "templateType": "randrange", "description": ""}, "a": {"group": "Ungrouped variables", "name": "a", "definition": "random(1..12#1)", "templateType": "randrange", "description": ""}}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Find the nth term of an Arithmetic progression

"}, "ungrouped_variables": ["a", "d", "n"], "advice": "

If the difference between successive pairs of terms is a constant then the series under examination is an arithmetic progression.

\n

Ths first term is \\(a\\) and the common difference is \\(d\\).

\n

The formula for the nth term of the series is given by:    \\(T_n=a+(n-1)d\\)

\n

In this example \\(a=\\var{a}\\),  \\(d = \\var{d}\\)  and  \\(n = \\var{n}\\)

\n

\\(T_\\var{n}=\\var{a}+\\simplify{{n}-1}*\\var{d}\\)

\n

\\(T_\\var{n}=\\var{a}+\\simplify{({n}-1)*{d}}\\)

\n

\\(T_\\var{n}=\\simplify{{a}+({n}-1)*{d}}\\)

", "variable_groups": [], "tags": [], "preamble": {"js": "", "css": ""}, "name": "Andrew's copy of Arithmetic progression: The nth term of a series", "rulesets": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "parts": [{"marks": 0, "showCorrectAnswer": true, "scripts": {}, "variableReplacements": [], "gaps": [{"strictPrecision": false, "precision": "1", "showCorrectAnswer": true, "scripts": {}, "variableReplacements": [], "precisionPartialCredit": 0, "showPrecisionHint": true, "maxValue": "{a}+({n}-1)*{d}", "precisionMessage": "You have not given your answer to the correct precision.", "marks": 1, "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "minValue": "{a}+({n}-1)*{d}", "precisionType": "dp", "allowFractions": false, "type": "numberentry"}], "prompt": "

Calculate the \\(\\var{n}th\\) term of the series.

\n

\\(T_\\var{n}=\\) [[0]]

", "variableReplacementStrategy": "originalfirst", "type": "gapfill"}], "extensions": [], "type": "question", "contributors": [{"name": "Andrew Dunbar", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/770/"}], "resources": []}]}], "contributors": [{"name": "Andrew Dunbar", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/770/"}]}