// Numbas version: exam_results_page_options {"name": "Andrew's copy of Arithmetic progression: The sum of the first n terms of a series", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "

If the difference between successive pairs of terms is a constant then the series under examination is an arithmetic progression.

\n

Ths first term is \$$a\$$ and the common difference is \$$d\$$.

\n

The formula for the nth term of the series is given by:    \$$S_n=\\frac{n}{2}\\left(2a+(n-1)d\\right)\$$

\n

In this example \$$a=\\var{a}\$$,  \$$d = \\var{d}\$$  and  \$$n = \\var{n}\$$

\n

\$$S_\\var{n}=\\frac{\\var{n}}{2}\\left(2*\\var{a}+(\\var{n}-1)\\var{d}\\right)\$$

\n

\$$S_\\var{n}=\\simplify{{n}/{2}}\\left(\\simplify{2{a}}+\\simplify{({n}-1)*{d}}\\right)\$$

\n

\$$S_\\var{n}=\\simplify{{n}/{2}}\\left(\\simplify{2{a}+({n}-1)*{d}}\\right)\$$

\n

\$$S_\\var{n}=\\simplify{{n}*{a}+{n}*({n}-1)*{d}/2}\$$

\n

", "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

The first three terms of a series are given by:

\n

\$$\\var{a} + \\simplify{{a}+{d}} + \\simplify{{a}+2*{d}}\\,+ \\, ...........\$$

", "ungrouped_variables": ["a", "d", "n"], "variables": {"n": {"definition": "random(4..19#1)", "templateType": "randrange", "name": "n", "description": "", "group": "Ungrouped variables"}, "d": {"definition": "random(2..11#1)", "templateType": "randrange", "name": "d", "description": "", "group": "Ungrouped variables"}, "a": {"definition": "random(1..12#1)", "templateType": "randrange", "name": "a", "description": "", "group": "Ungrouped variables"}}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Find the sum of the first n terms of an arithmetic progression

"}, "rulesets": {}, "extensions": [], "variable_groups": [], "tags": [], "preamble": {"js": "", "css": ""}, "name": "Andrew's copy of Arithmetic progression: The sum of the first n terms of a series", "parts": [{"marks": 0, "variableReplacements": [], "gaps": [{"showCorrectAnswer": true, "variableReplacements": [], "precisionType": "dp", "precisionPartialCredit": 0, "showPrecisionHint": true, "minValue": "{n}*{a}+({n}-1)*{n}*{d}/2", "marks": 1, "variableReplacementStrategy": "originalfirst", "precisionMessage": "You have not given your answer to the correct precision.", "type": "numberentry", "scripts": {}, "allowFractions": false, "correctAnswerFraction": false, "strictPrecision": false, "maxValue": "{n}*{a}+({n}-1)*{n}*{d}/2", "precision": "1"}], "type": "gapfill", "scripts": {}, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "prompt": "

Calculate the sum of the first \$$\\var{n}\$$ terms of this series.

\n

\$$S_\\var{n}=\$$ [[0]]

"}], "type": "question", "contributors": [{"name": "Andrew Dunbar", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/770/"}]}]}], "contributors": [{"name": "Andrew Dunbar", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/770/"}]}