// Numbas version: finer_feedback_settings {"name": "Andrew's copy of Solve a system of three simultaneous linear equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "advice": "

(i)    \\(\\var{a1}x+2y+4z=\\var{r1}\\)

\n

(ii)   \\(2x+\\var{b1}y+3z=\\var{r2}\\)

\n

(iii)  \\(5x+6y+\\var{c1}z=\\var{r3}\\)

\n

First reduce the three equations in three unknowns to a two equations in two unknowns problem by eliminating one of the variables.

\n

We can eliminate \\(x\\) using equations (i) and (ii)

\n

2*(i)     \\(\\simplify{2*{a1}}x+4y+8z=\\simplify{2*{r1}}\\)

\n

\\(\\var{a1}\\)*(ii)    \\(\\simplify{2*{a1}}x+\\simplify{{a1}*{b1}}y+\\simplify{3*{a1}}z=\\simplify{{a1}*{r2}}\\)

\n

Subtracting gives us a new equation

\n

(iv)    \\(\\simplify{(4-{a1}{b1})y+(8-3*{a1})z}=\\simplify{2*{r1}-{a1}*{r2}}\\)

\n

We can also eliminate \\(x\\) using equations (ii) and (iii)

\n

5*(ii)    \\(10x +\\simplify{5*{b1}}y+15z=\\simplify{5*{r2}}\\)

\n

2*(iii)   \\(10x+12y+\\simplify{2*{c1}}z=\\simplify{2*{r3}}\\)

\n

Subtracting gives us another new equation

\n

(v)     \\(\\simplify{(5*{b1}-12)y+(15-2*{c1})z}=\\simplify{5*{r2}-2*{r3}}\\)

\n

We could then eliminate the \\(y\\) from these two new equations

\n

\\(\\simplify{5*{b1}-12}\\)*(iv)    \\(\\simplify{(5*{b1}-12)*(4-{a1}{b1})y+(5*{b1}-12)*(8-3*{a1})z}=\\simplify{(5*{b1}-12)*(2*{r1}-{a1}*{r2})}\\)

\n

\\(\\simplify{4-{a1}{b1}}\\)*(v)    \\(\\simplify{(4-{a1}{b1})*(5*{b1}-12)y+(4-{a1}{b1})*(15-2*{c1})z}=\\simplify{(4-{a1}{b1})*(5*{r2}-2*{r3})}\\)

\n

Subtracting gives us

\n

\\(\\simplify{(5*{b1}-12)*(8-3*{a1})-(4-{a1}{b1})*(15-2*{c1})}z=\\simplify{(5*{b1}-12)*(2*{r1}-{a1}*{r2})-(4-{a1}{b1})*(5*{r2}-2*{r3})}\\)

\n

Thus

\n

\\(z=\\frac{\\simplify{(5*{b1}-12)*(2*{r1}-{a1}*{r2})-(4-{a1}{b1})*(5*{r2}-2*{r3})}}{\\simplify{(5*{b1}-12)*(8-3*{a1})-(4-{a1}{b1})*(15-2*{c1})}}=\\simplify{decimal{((5*{b1}-12)*(2*{r1}-{a1}*{r2})-(4-{a1}*{b1})*(5*{r2}-2*{r3}))/(  (5*{b1}-12)*(8-3*{a1})-(4-{a1}*{b1})*(15-2*{c1}))}}\\)

\n

We can now back substitute this value for \\(z\\) into equation (iv) to find the correct value for \\(y\\) and then back substitute both these values into equation (i) to calculate \\(x\\). 

\n

", "parts": [{"prompt": "

Input the value of \\(x\\) that satisfies the three equations.

\n

\\(x = \\) [[0]]

\n

Input the value of \\(y\\) that satisfies the three equations.

\n

\\(y = \\) [[1]]

\n

Input the value of \\(z\\) that satisfies the three equations.

\n

\\(z = \\) [[2]]

", "scripts": {}, "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "showFeedbackIcon": true, "gaps": [{"correctAnswerStyle": "plain", "precisionType": "dp", "mustBeReducedPC": 0, "strictPrecision": false, "precision": "3", "showPrecisionHint": true, "type": "numberentry", "correctAnswerFraction": false, "precisionMessage": "You have not given your answer to the correct precision.", "scripts": {}, "mustBeReduced": false, "marks": 1, "minValue": "((18-{b1}*{c1})*(3*{r1}-{r3})+({c1}-12)*(6*{r2}-{b1}*{r3}))/((3*{a1}-5)*(18-{b1}*{c1})-(12-5*{b1})*(12-{c1}))", "variableReplacementStrategy": "originalfirst", "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "variableReplacements": [], "precisionPartialCredit": 0, "maxValue": "((18-{b1}*{c1})*(3*{r1}-{r3})+({c1}-12)*(6*{r2}-{b1}*{r3}))/((3*{a1}-5)*(18-{b1}*{c1})-(12-5*{b1})*(12-{c1}))", "showCorrectAnswer": true}, {"correctAnswerStyle": "plain", "precisionType": "dp", "mustBeReducedPC": 0, "strictPrecision": false, "precision": "3", "showPrecisionHint": true, "type": "numberentry", "correctAnswerFraction": false, "precisionMessage": "You have not given your answer to the correct precision.", "scripts": {}, "mustBeReduced": false, "marks": 1, "minValue": "((15-2*{c1})*(2*{r1}-{a1}*{r2})+(3*{a1}-8)*(5*{r2}-2*{r3}))/((4-{a1}*{b1})*(15-2*{c1})-(5*{b1}-12)*(8-3*{a1}))", "variableReplacementStrategy": "originalfirst", "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "variableReplacements": [], "precisionPartialCredit": 0, "maxValue": "((15-2*{c1})*(2*{r1}-{a1}*{r2})+(3*{a1}-8)*(5*{r2}-2*{r3}))/((4-{a1}*{b1})*(15-2*{c1})-(5*{b1}-12)*(8-3*{a1}))", "showCorrectAnswer": true}, {"correctAnswerStyle": "plain", "precisionType": "dp", "mustBeReducedPC": 0, "strictPrecision": false, "precision": "3", "showPrecisionHint": true, "type": "numberentry", "correctAnswerFraction": false, "precisionMessage": "You have not given your answer to the correct precision.", "scripts": {}, "mustBeReduced": false, "marks": 1, "minValue": "((12-5*{b1})*(2*{r1}-{a1}*{r2})+(4-{b1}*{a1})*(5*{r2}-2*{r3}))/((4-{a1}*{b1})*(15-2*{c1})-(5*{b1}-12)*(8-3*{a1}))", "variableReplacementStrategy": "originalfirst", "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "variableReplacements": [], "precisionPartialCredit": 0, "maxValue": "((12-5*{b1})*(2*{r1}-{a1}*{r2})+(4-{b1}*{a1})*(5*{r2}-2*{r3}))/((4-{a1}*{b1})*(15-2*{c1})-(5*{b1}-12)*(8-3*{a1}))", "showCorrectAnswer": true}], "showCorrectAnswer": true}], "variable_groups": [], "variables": {"b1": {"description": "", "group": "Ungrouped variables", "name": "b1", "templateType": "randrange", "definition": "random(2..10#1)"}, "r2": {"description": "", "group": "Ungrouped variables", "name": "r2", "templateType": "randrange", "definition": "random(18..50#1)"}, "r1": {"description": "", "group": "Ungrouped variables", "name": "r1", "templateType": "randrange", "definition": "random(20..42#1)"}, "r3": {"description": "", "group": "Ungrouped variables", "name": "r3", "templateType": "randrange", "definition": "random(30..60#1)"}, "c1": {"description": "", "group": "Ungrouped variables", "name": "c1", "templateType": "randrange", "definition": "random(3..12#1)"}, "a1": {"description": "", "group": "Ungrouped variables", "name": "a1", "templateType": "randrange", "definition": "random(2..8#1)"}}, "statement": "

Solve the following system of three simultaneous linear equations:

\n

\\(2x+\\var{b1}y+3z=\\var{r2}\\)

\n

\\(5x+6y+\\var{c1}z=\\var{r3}\\)

\n

\\(\\var{a1}x+2y+4z=\\var{r1}\\)

", "name": "Andrew's copy of Solve a system of three simultaneous linear equations", "tags": [], "extensions": [], "ungrouped_variables": ["a1", "b1", "c1", "r1", "r2", "r3"], "preamble": {"js": "", "css": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"description": "

Solve a system of three simultaneous linear equations

", "licence": "Creative Commons Attribution 4.0 International"}, "rulesets": {}, "type": "question", "contributors": [{"name": "Andrew Dunbar", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/770/"}]}]}], "contributors": [{"name": "Andrew Dunbar", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/770/"}]}