// Numbas version: finer_feedback_settings {"name": "Andrew's copy of Solving quadratic equations 1(b)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "advice": "

The formula for solving a quadratic equation of the form  \\(ax^2+bx+c=0\\)  is given by

\n

\\(x=\\frac{-b\\pm \\sqrt{b^2-4ac}}{2a}\\)

\n

In this example  \\(a=\\var{a1},\\,\\,\\,b=\\var{b1}\\)  and  \\(c=\\var{c1}\\)

\n

\\(x=\\frac{-\\var{b1}\\pm \\sqrt{\\var{b1}^2-4\\times\\var{a1}\\times\\var{c1}}}{2\\times\\var{a1}}\\)

\n

\\(x=\\frac{-\\var{b1}\\pm \\sqrt{\\simplify{{b1}^2-4*{a1}*{c1}}}}{\\simplify{2*{a1}}}\\)

\n

\\(x=\\simplify{(-{b1}+ ({b1}^2-4*{a1}*{c1})^0.5)/(2*{a1})}\\)   or   \\(x=\\simplify{(-{b1}- ({b1}^2-4*{a1}*{c1})^0.5)/(2*{a1})}\\)

", "parts": [{"prompt": "

Type in the greater of the two values that satisfies the equation. Input your answer correct to three decimal places.

\n

\\(x\\) = [[0]]

\n

Type in the lesser of the two values that satisfies the equation. Input your answer correct to three decimal places.

\n

\\(x\\) = [[1]]

", "scripts": {}, "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "gaps": [{"allowFractions": false, "precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "minValue": "-{b1}/(2*{a1})+sqrt({b1}^2-4*{a1}*{c1})/(2*{a1})", "precision": "3", "correctAnswerFraction": false, "showPrecisionHint": false, "scripts": {}, "type": "numberentry", "maxValue": "-{b1}/(2*{a1})+sqrt({b1}^2-4*{a1}*{c1})/(2*{a1})", "strictPrecision": false, "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "variableReplacements": [], "marks": 1, "showCorrectAnswer": true}, {"allowFractions": false, "precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "minValue": "-{b1}/(2*{a1})-sqrt({b1}^2-4*{a1}*{c1})/(2*{a1})", "precision": "3", "correctAnswerFraction": false, "showPrecisionHint": false, "scripts": {}, "type": "numberentry", "maxValue": "-{b1}/(2*{a1})-sqrt({b1}^2-4*{a1}*{c1})/(2*{a1})", "strictPrecision": false, "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "variableReplacements": [], "marks": 1, "showCorrectAnswer": true}], "showCorrectAnswer": true}], "question_groups": [{"questions": [], "pickQuestions": 0, "name": "", "pickingStrategy": "all-ordered"}], "variable_groups": [], "variables": {"b1": {"description": "", "group": "Ungrouped variables", "name": "b1", "templateType": "randrange", "definition": "random(16..25#1)"}, "a1": {"description": "", "group": "Ungrouped variables", "name": "a1", "templateType": "randrange", "definition": "random(1..6#1)"}, "c1": {"description": "", "group": "Ungrouped variables", "name": "c1", "templateType": "randrange", "definition": "random(1..10#1)"}}, "statement": "

There are two values that satisfy the quadratic equation:

\n

\\(\\var{a1}x^2+\\var{b1}x+\\var{c1}=0\\)

", "name": "Andrew's copy of Solving quadratic equations 1(b)", "tags": [], "showQuestionGroupNames": false, "extensions": [], "ungrouped_variables": ["a1", "b1", "c1"], "preamble": {"js": "", "css": ""}, "variablesTest": {"maxRuns": "1", "condition": "b1^2>4*a1*c1"}, "type": "question", "rulesets": {}, "metadata": {"description": "

Solving quadratic equations using a formula,

", "licence": "Creative Commons Attribution 4.0 International"}, "contributors": [{"name": "Andrew Dunbar", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/770/"}]}]}], "contributors": [{"name": "Andrew Dunbar", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/770/"}]}