// Numbas version: exam_results_page_options {"name": "Find the stationary point of a function on a disk", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "r": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2,3,5,6,7)", "description": "", "name": "r"}, "s5": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s5"}, "d": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s4*random(1..9)", "description": "", "name": "d"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s3*random(1..9)", "description": "", "name": "c"}, "s4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s4"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "description": "", "name": "b"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}, "s3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s3"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "name": "a"}}, "ungrouped_variables": ["a", "c", "b", "d", "s3", "s2", "s1", "s5", "s4", "r"], "name": "Find the stationary point of a function on a disk", "functions": {}, "preamble": {"css": "", "js": ""}, "parts": [{"variableReplacementStrategy": "originalfirst", "stepsPenalty": 0, "scripts": {}, "gaps": [{"correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "showCorrectAnswer": true, "minValue": "{c}", "maxValue": "{c}", "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 2, "showFeedbackIcon": true}, {"correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "showCorrectAnswer": true, "minValue": "{d}", "maxValue": "{d}", "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 2, "showFeedbackIcon": true}, {"correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "showCorrectAnswer": true, "minValue": "{a+b}", "maxValue": "{a+b}", "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "showFeedbackIcon": true}], "type": "gapfill", "showCorrectAnswer": true, "steps": [{"variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "information", "showCorrectAnswer": true, "prompt": "\n \n \n

The $(x,y)$ coordinates of the stationary point of a function of 2 variables $f(x,y)$ are given by solving
the following 2 equations for $x$ and $y$

\n \n \n \n

\\[\\begin{eqnarray*}\n \n \\partial f \\over \\partial x &=&0\\\\\n \n \\\\\n \n \\partial f \\over \\partial y &=&0\n \n \\end{eqnarray*}\n \n \\]

\n \n \n \n

In this case you get two equations to solve for $x$ and $y$

\n \n \n ", "variableReplacements": [], "marks": 0}], "prompt": "

$x$ – coordinate, $a=$ [[0]]

\n

$y$ – coordinate, $b=$ [[1]]

\n

Input value of $f(x,y)$ at $(a,b)$:

\n

$f(a,b)=$ [[2]]

\n

If you want some help, click on Show steps.

", "variableReplacements": [], "marks": 0, "showFeedbackIcon": true}], "statement": "

In the following question find the $(x,y)$ coordinates of the single stationary point $(a,b) \\in D$ of the continuous function $f: D \\rightarrow \\mathbb{R}$:

\n

\\[f(x,y) = \\simplify[std]{{a} + {b}*e^(-(x-{c})^2-(y-{d})^2)}\\]

\n

where

\n

\\[D = \\{(x,y): \\simplify[std]{(x-{c})^2+(y-{d})^2}\\} \\le \\var{r}\\]

\n

that is, $D$ is a disk of radius $\\simplify[std]{sqrt({r})}$ and centre $(\\var{c},\\var{d})$.

\n

Input both cooordinates as fractions or integers and not decimals.

", "tags": [], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "extensions": [], "type": "question", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Find the coordinates of the stationary point for $f: D \\rightarrow \\mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

The $(x,y)$ coordinates of the stationary point of a function of 2 variables $f(x,y)$ are given by solving
the following 2 equations for $x$ and $y$

\n

\\begin{align}
\\partial f \\over \\partial x &= 0 \\\\[1em]
\\partial f \\over \\partial y &= 0
\\end{align}

\n

In this case you get two equations to solve for $x$ and $y$

\n

\\begin{align}
\\simplify[std]{{-2*b}*(x-{c})*e^(-(x-{c})^2-(y-{d})^2)} &= 0 \\\\[1em]
\\simplify[std]{{-2*b}*(y-{d})*e^(-(x-{c})^2-(y-{d})^2)} &= 0
\\end{align}

\n

We can cancel off the term $\\simplify[std]{e^(-(x-{c})^2-(y-{d})^2)}$ in both equations as $\\simplify[std]{e^(-(x-{c})^2-(y-{d})^2)} \\neq 0,\\;\\forall x,\\;y$.  

\n

On solving these, we get

\n

\\[ x = \\var{c}, \\quad \\;y=\\var{d} \\]

\n

So the stationary point is $(\\var{c},\\var{d}) \\in D$.

\n

On substituting these values into $f(x,y)$ we get:

\n

\\[ f(\\var{c},\\var{d})=\\simplify[std,!zeropower,!othernumbers]{{a}+{b}*e^0={a+b}} \\]

", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}]}