// Numbas version: exam_results_page_options {"name": "Harry's copy of Solving quadratics by factorising", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "preamble": {"js": "", "css": ""}, "parts": [{"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "prompt": "

Factorise \$\\simplify{{a[0]*c[0]}x^2+{a[0]*d[0]+b[0]*c[0]}x+ {b[0]*d[0]}}\$. [[0]]

\n

Hence solve \$\\simplify{{a[0]*c[0]}x^2+{a[0]*d[0]+b[0]*c[0]}x+ {b[0]*d[0]}}=0\$. [[1]]

", "variableReplacements": [], "type": "gapfill", "gaps": [{"variableReplacementStrategy": "originalfirst", "scripts": {}, "variableReplacements": [], "showpreview": true, "showFeedbackIcon": true, "answer": "({a[0]}x+{b[0]})({c[0]}x+{d[0]})", "showCorrectAnswer": true, "vsetrange": [0, 1], "musthave": {"message": "", "strings": [")("], "partialCredit": 0, "showStrings": false}, "checkingtype": "absdiff", "answersimplification": "std", "vsetrangepoints": 5, "notallowed": {"message": "", "strings": ["x^2", "x*x", "x x", "x(", "x*("], "partialCredit": 0, "showStrings": false}, "checkvariablenames": false, "expectedvariablenames": [], "marks": "1", "type": "jme", "checkingaccuracy": 0.0001}, {"variableReplacementStrategy": "originalfirst", "scripts": {}, "numRows": 1, "allowResize": false, "correctAnswerFractions": true, "showFeedbackIcon": true, "showCorrectAnswer": true, "correctAnswer": "matrix([{solmin[0]},{solmax[0]}])", "type": "matrix", "allowFractions": true, "numColumns": "2", "tolerance": 0, "marks": 1, "markPerCell": false, "variableReplacements": []}], "showFeedbackIcon": true, "marks": 0}, {"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "prompt": "

Factorise \$\\simplify{{a[1]*c[1]}x^2+{a[1]*d[1]+b[1]*c[1]}x+ {b[1]*d[1]}}\$. [[0]]

\n

Hence solve \$\\simplify{{a[1]*c[1]}x^2+{a[1]*d[1]+b[1]*c[1]}x+ {b[1]*d[1]}}=0\$. [[1]]

", "variableReplacements": [], "type": "gapfill", "gaps": [{"variableReplacementStrategy": "originalfirst", "scripts": {}, "variableReplacements": [], "showpreview": true, "showFeedbackIcon": true, "answer": "({a[1]}x+{b[1]})({c[1]}x+{d[1]})", "showCorrectAnswer": true, "vsetrange": [0, 1], "musthave": {"message": "", "strings": [")("], "partialCredit": 0, "showStrings": false}, "checkingtype": "absdiff", "answersimplification": "std", "vsetrangepoints": 5, "notallowed": {"message": "", "strings": ["x^2", "x*x", "x x", "x(", "x*("], "partialCredit": 0, "showStrings": false}, "checkvariablenames": false, "expectedvariablenames": [], "marks": "1", "type": "jme", "checkingaccuracy": 0.0001}, {"variableReplacementStrategy": "originalfirst", "scripts": {}, "numRows": 1, "allowResize": false, "correctAnswerFractions": true, "showFeedbackIcon": true, "showCorrectAnswer": true, "correctAnswer": "matrix([{solmin[1]},{solmax[1]}])", "type": "matrix", "allowFractions": true, "numColumns": "2", "tolerance": 0, "marks": 1, "markPerCell": false, "variableReplacements": []}], "showFeedbackIcon": true, "marks": 0}, {"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "prompt": "

Factorise \$\\simplify{{a[2]*c[2]}x^2+{a[2]*d[2]+b[2]*c[2]}x+ {b[2]*d[2]}}\$. [[0]]

\n

Hence solve \$\\simplify{{a[2]*c[2]}x^2+{a[2]*d[2]+b[2]*c[2]}x+ {b[2]*d[2]}}=0\$. [[1]]

", "variableReplacements": [], "type": "gapfill", "gaps": [{"variableReplacementStrategy": "originalfirst", "scripts": {}, "variableReplacements": [], "showpreview": true, "showFeedbackIcon": true, "answer": "({a[2]}x+{b[2]})({c[2]}x+{d[2]})", "showCorrectAnswer": true, "vsetrange": [0, 1], "musthave": {"message": "", "strings": [")("], "partialCredit": 0, "showStrings": false}, "checkingtype": "absdiff", "answersimplification": "std", "vsetrangepoints": 5, "notallowed": {"message": "", "strings": ["x^2", "x*x", "x x", "x(", "x*("], "partialCredit": 0, "showStrings": false}, "checkvariablenames": false, "expectedvariablenames": [], "marks": "1", "type": "jme", "checkingaccuracy": 0.0001}, {"variableReplacementStrategy": "originalfirst", "scripts": {}, "numRows": 1, "allowResize": false, "correctAnswerFractions": true, "showFeedbackIcon": true, "showCorrectAnswer": true, "correctAnswer": "matrix([{solmin[2]},{solmax[2]}])", "type": "matrix", "allowFractions": true, "numColumns": "2", "tolerance": 0, "marks": 1, "markPerCell": false, "variableReplacements": []}], "showFeedbackIcon": true, "marks": 0}], "advice": "", "variables": {"d": {"group": "Ungrouped variables", "templateType": "anything", "definition": "vector([random(1..3)]+[random(2..3)]+[random(1..3)]+[random(-2..-4)]+[random(3..6)])", "description": "", "name": "d"}, "b": {"group": "Ungrouped variables", "templateType": "anything", "definition": "vector([random(1..5)] + [random(1..5)] + [random(-1..-5)] + [random(-1..-5)] + [random(2..5)] )", "description": "", "name": "b"}, "solmax": {"group": "Ungrouped variables", "templateType": "anything", "definition": "vector([max(-d[0]/c[0],-b[0]/a[0])]+[max(-d[1]/c[1],-b[1]/a[1])]+[max(-d[2]/c[2],-b[2]/a[2])]+[max(-d[3]/c[3],-b[3]/a[3])]+[max(-d[4]/c[4],-b[4]/a[4])])", "description": "", "name": "solmax"}, "c": {"group": "Ungrouped variables", "templateType": "anything", "definition": "vector([1]+[1]+[1]+[1]+[1])", "description": "", "name": "c"}, "solmin": {"group": "Ungrouped variables", "templateType": "anything", "definition": "vector([min(-d[0]/c[0],-b[0]/a[0])]+[min(-d[1]/c[1],-b[1]/a[1])]+[min(-d[2]/c[2],-b[2]/a[2])]+[min(-d[3]/c[3],-b[3]/a[3])]+[min(-d[4]/c[4],-b[4]/a[4])])", "description": "", "name": "solmin"}, "a": {"group": "Ungrouped variables", "templateType": "anything", "definition": "vector([1]+[random(2..4)]+[1]+[1]+[random(3..4)])", "description": "", "name": "a"}}, "ungrouped_variables": ["a", "b", "c", "d", "solmax", "solmin"], "name": "Harry's copy of Solving quadratics by factorising", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Several quadratics are given and students are asked to complete the square.

"}, "statement": "