// Numbas version: finer_feedback_settings {"name": "Find common difference in arithmetic sequences with gaps", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "preamble": {"js": "", "css": ""}, "type": "question", "name": "Find common difference in arithmetic sequences with gaps", "parts": [{"variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "showCorrectAnswer": true, "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "allowFractions": false, "scripts": {}, "minValue": "{n[0]}", "maxValue": "{n[0]}", "marks": 1, "variableReplacements": []}], "marks": 0, "showFeedbackIcon": true, "variableReplacements": [], "prompt": "
$\\var{n[0]*index[0]}$, $\\var{n[0]*(index[0]+1)}$, $\\var{n[0]*(index[0]+2)}$, $\\var{n[0]*(index[0]+3)}$
\nCommon Difference = [[0]]
"}, {"variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "showCorrectAnswer": true, "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "allowFractions": false, "scripts": {}, "minValue": "{n[1]}", "maxValue": "{n[1]}", "marks": 1, "variableReplacements": []}], "marks": 0, "showFeedbackIcon": true, "variableReplacements": [], "prompt": "$\\var{n[1]*(index[1])}$, $?$, $\\var{n[1]*(index[1]+2)}$, $?$, $\\var{n[1]*(index[1]+4)}$
\nCommon Difference = [[0]]
"}, {"variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "showCorrectAnswer": true, "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "allowFractions": false, "scripts": {}, "minValue": "{n[2]}", "maxValue": "{n[2]}", "marks": 1, "variableReplacements": []}], "marks": 0, "showFeedbackIcon": true, "variableReplacements": [], "prompt": "$\\var{n[2]*(index[2])}$, $?$, $?$, $\\var{n[2]*(index[2]+3)}$, $?$, $?$, $\\var{n[2]*(index[2]+6)}$
\nCommon Difference = [[0]]
"}], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Given sequences with missing terms, find the common difference between terms.
"}, "tags": ["Arithmetic Sequences", "Arithmetic sequences", "arithmetic sequences", "common difference", "sequences", "taxonomy"], "variables": {"n": {"templateType": "anything", "description": "", "definition": "shuffle(3..9)[0..3]", "name": "n", "group": "Ungrouped variables"}, "index": {"templateType": "anything", "description": "", "definition": "shuffle(5..15 except 10)[0..3]", "name": "index", "group": "Ungrouped variables"}}, "rulesets": {}, "extensions": [], "functions": {}, "ungrouped_variables": ["n", "index"], "statement": "Find the common differences of the following arithmetic sequences. Some of the terms are missing.
", "advice": "In an arithmetic sequence, the difference between two adjecent terms is always the same.
\nCall the common difference $d$, and the first term in the sequence $a_0$. Then the sequence goes as follows:
\n\\[ a_0, \\; a_0+d, \\; a_0+2d, \\; a_0+3d, \\; \\ldots \\]
\nThe difference between a term in the sequence and the term $n$ places along is $n \\times d$.
\nThe difference between the first two terms is $\\var{n[0]*(index[0]+1)} - \\var{n[0]*index[0]} = \\var{n[0]}$.
\nSo the common difference is $\\var{n[0]}$.
\nWe're not given any adjacent terms of this sequence, but we are given some terms two palces apart.
\n\\begin{align}
2d &= \\var{n[1]*(index[1]+2)} - \\var{n[1]*index[1]} \\\\
&= \\var{2*n[1]} \\\\
d &= \\var{n[1]}
\\end{align}
The common difference is $\\var{n[1]}$.
\nAgain we're not given any adjacent terms of this sequence, but we have two terms three places apart.
\n\\begin{align}
3d &= \\var{n[2]*(index[2]+3)} - \\var{n[2]*index[2]} \\\\
&= \\var{3*n[2]} \\\\
d &= \\var{n[2]}
\\end{align}
The common difference is $\\var{n[2]}$.
\n", "variablesTest": {"condition": "", "maxRuns": 100}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}]}