// Numbas version: finer_feedback_settings {"name": "Katherine's copy of Solving quadratics by factorising", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"maxRuns": 100, "condition": ""}, "statement": "
Solve the quadratic equations by factorising. Enter answers in ASCENDING ORDER.
", "preamble": {"js": "", "css": ""}, "tags": [], "advice": "", "ungrouped_variables": ["a", "b", "c", "d", "solmax", "solmin"], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Several quadratics are given and students are asked to complete the square.
"}, "variable_groups": [], "functions": {}, "parts": [{"showCorrectAnswer": true, "showFeedbackIcon": true, "type": "gapfill", "prompt": "Factorise $\\simplify{{a[0]*c[0]}x^2+{a[0]*d[0]+b[0]*c[0]}x + {b[0]*d[0]}}$. [[0]]
\nHence solve $\\simplify{{a[0]*c[0]}x^2+{a[0]*d[0]+b[0]*c[0]}x+ {b[0]*d[0]}}=0$. [[1]]
", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "scripts": {}, "marks": 0, "gaps": [{"showCorrectAnswer": true, "showFeedbackIcon": true, "answersimplification": "std", "vsetrange": [0, 1], "scripts": {}, "variableReplacements": [], "answer": "({a[0]}x+{b[0]})({c[0]}x+{d[0]})", "checkingtype": "absdiff", "notallowed": {"strings": ["x^2", "x*x", "x x", "x(", "x*("], "message": "", "showStrings": false, "partialCredit": 0}, "checkingaccuracy": 0.0001, "variableReplacementStrategy": "originalfirst", "showpreview": true, "expectedvariablenames": [], "checkvariablenames": false, "marks": "1", "vsetrangepoints": 5, "musthave": {"strings": [")("], "message": "", "showStrings": false, "partialCredit": 0}, "type": "jme"}, {"showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "markPerCell": false, "correctAnswer": "matrix([{solmin[0]},{solmax[0]}])", "variableReplacementStrategy": "originalfirst", "type": "matrix", "numRows": 1, "numColumns": "2", "allowFractions": true, "allowResize": false, "marks": 1, "tolerance": 0, "correctAnswerFractions": true}]}, {"showCorrectAnswer": true, "showFeedbackIcon": true, "type": "gapfill", "prompt": "Factorise $\\simplify{{a[1]*c[1]}x^2+{a[1]*d[1]+b[1]*c[1]}x+ {b[1]*d[1]}}$. [[0]]
\nHence solve $\\simplify{{a[1]*c[1]}x^2+{a[1]*d[1]+b[1]*c[1]}x+ {b[1]*d[1]}}=0$. [[1]]
", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "scripts": {}, "marks": 0, "gaps": [{"showCorrectAnswer": true, "showFeedbackIcon": true, "answersimplification": "std", "vsetrange": [0, 1], "scripts": {}, "variableReplacements": [], "answer": "({a[1]}x+{b[1]})({c[1]}x+{d[1]})", "checkingtype": "absdiff", "notallowed": {"strings": ["x^2", "x*x", "x x", "x(", "x*("], "message": "", "showStrings": false, "partialCredit": 0}, "checkingaccuracy": 0.0001, "variableReplacementStrategy": "originalfirst", "showpreview": true, "expectedvariablenames": [], "checkvariablenames": false, "marks": "1", "vsetrangepoints": 5, "musthave": {"strings": [")("], "message": "", "showStrings": false, "partialCredit": 0}, "type": "jme"}, {"showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "markPerCell": false, "correctAnswer": "matrix([{solmin[1]},{solmax[1]}])", "variableReplacementStrategy": "originalfirst", "type": "matrix", "numRows": 1, "numColumns": "2", "allowFractions": true, "allowResize": false, "marks": 1, "tolerance": 0, "correctAnswerFractions": true}]}, {"showCorrectAnswer": true, "showFeedbackIcon": true, "type": "gapfill", "prompt": "Factorise $\\simplify{{a[2]*c[2]}x^2+{a[2]*d[2]+b[2]*c[2]}x+ {b[2]*d[2]}}$. [[0]]
\nHence solve $\\simplify{{a[2]*c[2]}x^2+{a[2]*d[2]+b[2]*c[2]}x+ {b[2]*d[2]}}=0$. [[1]]
", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "scripts": {}, "marks": 0, "gaps": [{"showCorrectAnswer": true, "showFeedbackIcon": true, "answersimplification": "std", "vsetrange": [0, 1], "scripts": {}, "variableReplacements": [], "answer": "({a[2]}x+{b[2]})({c[2]}x+{d[2]})", "checkingtype": "absdiff", "notallowed": {"strings": ["x^2", "x*x", "x x", "x(", "x*("], "message": "", "showStrings": false, "partialCredit": 0}, "checkingaccuracy": 0.0001, "variableReplacementStrategy": "originalfirst", "showpreview": true, "expectedvariablenames": [], "checkvariablenames": false, "marks": "1", "vsetrangepoints": 5, "musthave": {"strings": [")("], "message": "", "showStrings": false, "partialCredit": 0}, "type": "jme"}, {"showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "markPerCell": false, "correctAnswer": "matrix([{solmin[2]},{solmax[2]}])", "variableReplacementStrategy": "originalfirst", "type": "matrix", "numRows": 1, "numColumns": "2", "allowFractions": true, "allowResize": false, "marks": 1, "tolerance": 0, "correctAnswerFractions": true}]}], "name": "Katherine's copy of Solving quadratics by factorising", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": [], "variables": {"solmin": {"name": "solmin", "group": "Ungrouped variables", "definition": "vector([min(-d[0]/c[0],-b[0]/a[0])]+[min(-d[1]/c[1],-b[1]/a[1])]+[min(-d[2]/c[2],-b[2]/a[2])]+[min(-d[3]/c[3],-b[3]/a[3])]+[min(-d[4]/c[4],-b[4]/a[4])])", "templateType": "anything", "description": ""}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "vector([1]+[random(2..4)]+[1]+[1]+[random(3..4)])", "templateType": "anything", "description": ""}, "solmax": {"name": "solmax", "group": "Ungrouped variables", "definition": "vector([max(-d[0]/c[0],-b[0]/a[0])]+[max(-d[1]/c[1],-b[1]/a[1])]+[max(-d[2]/c[2],-b[2]/a[2])]+[max(-d[3]/c[3],-b[3]/a[3])]+[max(-d[4]/c[4],-b[4]/a[4])])", "templateType": "anything", "description": ""}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "vector([1]+[1]+[1]+[1]+[1])", "templateType": "anything", "description": ""}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "vector([random(1..3)]+[random(2..3)]+[random(1..3)]+[random(-2..-4)]+[random(3..6)])", "templateType": "anything", "description": ""}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "vector([random(1..5)] + [random(1..5)] + [random(-1..-5)] + [random(-1..-5)] + [random(2..5)] )", "templateType": "anything", "description": ""}}, "type": "question", "contributors": [{"name": "Katherine Tomlinson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1652/"}]}]}], "contributors": [{"name": "Katherine Tomlinson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1652/"}]}