// Numbas version: finer_feedback_settings {"name": "Inequalities that involve a single absolute value", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Inequalities that involve a single absolute value", "tags": [], "metadata": {"description": "
Inequality involving a single absolute value, question solution uses the piecewise nature of the absolute value function.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "You are given the inequality \\[|\\simplify{{a}x+{b}}| \\var{latex(sym)} \\var{c}.\\]
\n", "advice": "For questions of this type (where the absolute value is 'less than' or 'less than and equal to' something positive) we can set out our working in a shorter way:
\n\\begin{alignat}{2} &&|\\simplify{{a}x+{b}}| &\\var{latex(sym)} \\var{c}\\\\ \\var{-c} &\\var{latex(sym)}&\\simplify{{a}x+{b}}&\\var{latex(sym)}\\var{c}\\\\ \\var{-c-b} &\\var{latex(sym)} &\\simplify{{a}x}\\quad&\\var{latex(sym)}\\var{c-b}\\\\ \\var[fractionNumbers]{r1}&\\var{latex(sym)}&x\\quad&\\var{latex(sym)}\\var[fractionNumbers]{r2}.\\end{alignat}
\n\\begin{alignat}{2} &&|\\simplify{{a}x+{b}}| &\\var{latex(sym)} \\var{c}\\\\ \\var{-c} &\\var{latex(sym)}&\\simplify{{a}x+{b}}&\\var{latex(sym)}\\var{c}\\\\ \\var{-c-b} &\\var{latex(sym)} &\\simplify{{a}x}\\quad&\\var{latex(sym)}\\var{c-b}.\\end{alignat}
\n\\begin{alignat}{2} &&|\\simplify{{a}x+{b}}| &\\var{latex(sym)} \\var{c}\\\\ \\var{-c} &\\var{latex(sym)}&\\simplify{{a}x+{b}}&\\var{latex(sym)}\\var{c}\\\\ \\var{-c-b} &\\var{latex(sym)} &\\simplify{{a}x}\\quad&\\var{latex(sym)}\\var{c-b}\\\\ \\var[fractionNumbers]{r2}&\\var{latex(backsym)}&x\\quad&\\var{latex(backsym)}\\var[fractionNumbers]{r1}\\\\\\var[fractionNumbers]{r1}&\\var{latex(sym)}&x\\quad&\\var{latex(sym)}\\var[fractionNumbers]{r2}.\\end{alignat}
\n\n\n
Recall that the absolute value is defined as the piecewise function \\[|x|=\\begin{cases}x, &\\text{ for } x\\ge 0\\\\ -x, &\\text{ for } x<0. \\end{cases}\\]
\nThis means that $|\\simplify{{a}x+{b}}|$ is actually $\\simplify{{a}x+{b}}$ when $\\simplify{{a}x+{b}}\\ge 0$ but it is $-(\\simplify{{a}x+{b}})$ when $\\simplify{{a}x+{b}}<0$. We have two cases:
\n\nCase 1: $\\simplify{{a}x+{b}}\\ge 0$
\nRearranging $\\simplify{{a}x+{b}}\\ge 0$ for $x$ gives $x \\ge \\simplify[fractionNumbers]{{-b/a}}$ $x \\le \\simplify[fractionNumbers]{{-b/a}}$ and so case 1 is only relevant for $x \\ge \\simplify[fractionNumbers]{{-b/a}}$ $x \\le \\simplify[fractionNumbers]{{-b/a}}$.
\nIn case 1, our inequality is simply $\\simplify{{a}x+{b}} \\var{latex(sym)} \\var{c}$, and so rearranging it for $x$ gives $x \\var{latex(sym)} \\simplify[fractionNumbers,simplifyFractions,!unitDenominator]{{(c-b)/a}}$ $x \\var{latex(backsym)} \\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{(c-b)/a}}$.
\nSo in conclusion for case 1, we require that $x \\ge \\simplify[fractionNumbers]{{-b/a}}$ $x \\le \\simplify[fractionNumbers]{{-b/a}}$ and $x \\var{latex(sym)} \\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{(c-b)/a}}$ $x \\var{latex(backsym)} \\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{(c-b)/a}}$ which is the same as $\\simplify[fractionNumbers]{-{b/a}}\\le x\\var{latex(sym)} \\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{(c-b)/a}}$ $\\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{(c-b)/a}}\\var{latex(sym)} x\\le \\simplify[fractionNumbers]{{-b/a}}$ $x\\var{latex(sym)}\\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{(c-b)/a}}$ $x\\var{latex(backsym)}\\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{(c-b)/a}}$.
\n\nCase 2: $\\simplify{{a}x+{b}}< 0$
\nRearranging $\\simplify{{a}x+{b}}< 0$ for $x$ gives $x < \\simplify[fractionNumbers]{{-b/a}}$ $x > \\simplify[fractionNumbers]{{-b/a}}$ and so case 2 is only relevant for $x < \\simplify[fractionNumbers]{{-b/a}}$ $x > \\simplify[fractionNumbers]{{-b/a}}$.
\nIn case 2, our inequality is actually $-(\\simplify{{a}x+{b}}) \\var{latex(sym)} \\var{c}$, and so rearranging it for $x$ gives $x \\var{latex(backsym)} \\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{(-c-b)/a}}$ $x \\var{latex(sym)} \\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{(-c-b)/a}}$.
\nSo in conclusion for case 2, we require that $x < \\simplify[fractionNumbers]{-{b/a}}$ $x > \\simplify[fractionNumbers]{-{b/a}}$ and $x \\var{latex(backsym)} \\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{(-c-b)/a}}$ $x \\var{latex(sym)} \\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{(-c-b)/a}}$ which is the same as $\\simplify[fractionNumbers]{{-(b+c)/a}}\\var{latex(sym)} x< \\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{-b}/{a}}$ $\\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{-b/a}}< x \\var{latex(sym)} \\simplify[fractionNumbers,simplifyFractions,unitDenominator]{-{(b+c)/a}}$ $x\\var{latex(backsym)}\\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{(-c-b)/a}}$ $x\\var{latex(sym)}\\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{(-c-b)/a}}$.
\n\nTherefore the solution to our original inequality $|\\simplify{{a}x+{b}}| \\var{latex(sym)} \\var{c}$ is
\n\\[\\var[fractionNumbers]{r1}<x<\\var[fractionNumbers]{r2}.\\]
\n\\[\\var[fractionNumbers]{r1}\\le x \\le\\var[fractionNumbers]{r2}.\\]
\n\\[x< \\var[fractionNumbers]{r1} \\text{ or } x> \\var[fractionNumbers]{r2}. \\]
\n\\[x\\le \\var[fractionNumbers]{r1} \\text{ or } x\\ge\\var[fractionNumbers]{r2}. \\]
", "rulesets": {}, "extensions": ["jsxgraph"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "choice": {"name": "choice", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "hole": {"name": "hole", "group": "Ungrouped variables", "definition": "-b/d", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-12..12 except -1..1)", "description": "d
", "templateType": "anything", "can_override": false}, "r1": {"name": "r1", "group": "Ungrouped variables", "definition": "rootList[0]", "description": "r1
", "templateType": "anything", "can_override": false}, "prod": {"name": "prod", "group": "Ungrouped variables", "definition": "leadCoeff*choice", "description": "", "templateType": "anything", "can_override": false}, "backprod": {"name": "backprod", "group": "Ungrouped variables", "definition": "leadCoeff*backchoice", "description": "", "templateType": "anything", "can_override": false}, "leadCoeff": {"name": "leadCoeff", "group": "Ungrouped variables", "definition": "sign(a)", "description": "", "templateType": "anything", "can_override": false}, "r2": {"name": "r2", "group": "Ungrouped variables", "definition": "rootList[1]", "description": "r2
", "templateType": "anything", "can_override": false}, "extremeY": {"name": "extremeY", "group": "Ungrouped variables", "definition": "(r2-r1)^2/4\n\n//abs((c*b-a)*b-(b*(d*d-1)+d*(c*b-a))^2/(4*d*(c*d-1)))", "description": "approx of the furthest we need to plot in the y direction
", "templateType": "anything", "can_override": false}, "nonhole": {"name": "nonhole", "group": "Ungrouped variables", "definition": "(a-b*c)/(c*d-1)", "description": "", "templateType": "anything", "can_override": false}, "one": {"name": "one", "group": "Ungrouped variables", "definition": "if(choice=3 or choice=4,true,false)", "description": "", "templateType": "anything", "can_override": false}, "sym": {"name": "sym", "group": "Ungrouped variables", "definition": "['>','\\\\ge','<','\\\\le'][choice-1]", "description": "", "templateType": "anything", "can_override": false}, "dr": {"name": "dr", "group": "Ungrouped variables", "definition": "r2-r1", "description": "", "templateType": "anything", "can_override": false}, "strict": {"name": "strict", "group": "Ungrouped variables", "definition": "if(choice=1 or choice=3,true,false)", "description": "", "templateType": "anything", "can_override": false}, "rootList": {"name": "rootList", "group": "Ungrouped variables", "definition": "sort([(-b-c)/a,(-b+c)/a])", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "backChoice": {"name": "backChoice", "group": "Ungrouped variables", "definition": "mod(choice+1,4)+1", "description": "", "templateType": "anything", "can_override": false}, "backsym": {"name": "backsym", "group": "Ungrouped variables", "definition": "['>','\\\\ge','<','\\\\le'][backChoice-1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["choice", "sym", "a", "c", "d", "b", "leadCoeff", "prod", "one", "rootList", "r1", "r2", "strict", "backChoice", "backsym", "extremeY", "backprod", "dr", "hole", "nonhole"], "variable_groups": [], "functions": {"graph": {"parameters": [], "type": "html", "language": "javascript", "definition": "a = Numbas.jme.unwrapValue(scope.variables.leadcoeff);\nr1 = Numbas.jme.unwrapValue(scope.variables.r1);\nr2 = Numbas.jme.unwrapValue(scope.variables.r2);\nprod = Numbas.jme.unwrapValue(scope.variables.backprod);\ndr=Numbas.jme.unwrapValue(scope.variables.dr);\nexy=Numbas.jme.unwrapValue(scope.variables.extremey);\nhole = Numbas.jme.unwrapValue(scope.variables.hole);\nnonhole = Numbas.jme.unwrapValue(scope.variables.nonhole);\n\nvar div = Numbas.extensions.jsxgraph.makeBoard('400px','400px',{boundingBox:[r1-dr,1.2*exy,r2+dr,-1.2*exy],grid:true,axis:false});\nvar board = div.board;\n\n// create the x-axis.\nvar xaxis = board.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = board.create('ticks',[xaxis,2],{\n drawLabels: true,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = board.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\nvar yticks = board.create('ticks',[yaxis,10],{\ndrawLabels: true,\nlabel: {offset: [-20, 0]},\nminorTicks: 0,\n});\n\n\n\nif(prod==2 || prod==4 || prod==-2 || prod==-4){ptColour = 'green';} else {ptColour = 'red';};\n\nboard.create('point',[hole,0],{fixed:true,withLabel:false,strokeColour:'red', fillColor:'red'});\nboard.create('point',[nonhole,0],{fixed:true,withLabel:false,strokeColor:ptColour,fillColor:ptColour});\n\nif(prod==2 || prod==-4 || prod== 1 || prod==-3){ outColour = 'green';} else {outColour = 'red';};\nif(prod==-2 || prod==4 || prod== -1 || prod==3){inColour = 'green';} else {inColour = 'red';};\n\nboard.create('functiongraph',[function(x){return a*(x**2-(r1+r2)*x+r1*r2);},r1,r2],{strokeColor:inColour,strokeWidth:2});\nboard.create('functiongraph',[function(x){return a*(x**2-(r1+r2)*x+r1*r2);},r1-dr,r1],{strokeColor:outColour,strokeWidth:2});\nboard.create('functiongraph',[function(x){return a*(x**2-(r1+r2)*x+r1*r2);},r2,r2+dr],{strokeColor:outColour,strokeWidth:2});\n\nreturn div;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The solution to the above inequality is [[0]].
\nNote: To type $\\ge$ use >= and for $\\le$ use <=.
Note: If your answer consists of two infinite intervals, such as $x<-1, \\,x>5$, type your inequalities with the word or between them, such as x<-1 or x>5, rather than using a comma between them.