// Numbas version: finer_feedback_settings {"name": "Q17.(new)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "
Answer the following:
", "variablesTest": {"maxRuns": "1000", "condition": ""}, "advice": "When $n$ is positive, we multiply $10$ by itself $n$ times,
\n\\[\\text{e.g. } 10^3 = 10 \\times 10 \\times 10 = 1000 \\text{ .}\\]
\nWhen $n$ is negative, we can think of $10^{-n}$ as $\\frac{1}{10^{n}}$,
\n\\[\\text{e.g. } 10^{-3} = \\frac{1}{10^3} = \\frac{1}{1000} = 0.001\\text{ .}\\]
\nWhen $n = 0$:
\n\\[10^{0} = 1 \\text{ .}\\]
\nGenerally, we can think of $10^n$ as a number in standard form $1 \\times 10^n$. Then $n$ always tells us the number of decimal places to move the decimal point in $1.0$, for example
\n\\[10^{-3} = 1.0 \\times 10^{-3} \\text{ and since } n = - 3 \\text{, we go } 3 \\text{ places back as follows: } 1.0 ⇒ 0.1 ⇒ 0.01 ⇒ 0.001 \\text{ .}\\]
\nA complete table of powers of ten for $n$ from $-6$ to $6$ is:
\n$n$ | \n$10^n$ | \n
---|---|
$-6$ | \n$0.000001$ | \n
$-5$ | \n$0.00001$ | \n
$-4$ | \n$0.0001$ | \n
$-3$ | \n$0.001$ | \n
$-2$ | \n$0.01$ | \n
$-1$ | \n$0.1$ | \n
$0$ | \n$1$ | \n
$1$ | \n$10$ | \n
$2$ | \n$100$ | \n
$3$ | \n$1000$ | \n
$4$ | \n$10000$ | \n
$5$ | \n$100000$ | \n
$6$ | \n$1000000$ | \n
Fill in a table of powers of 10.
"}, "variables": {"o": {"name": "o", "definition": "random(-3..3#2)", "group": "Ungrouped variables", "description": "", "templateType": "randrange"}, "a": {"name": "a", "definition": "random(1..3#1)", "group": "Ungrouped variables", "description": "", "templateType": "randrange"}, "m": {"name": "m", "definition": "random(-5..5#1)", "group": "Ungrouped variables", "description": "", "templateType": "randrange"}, "g": {"name": "g", "definition": "[3,1,2]", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "p": {"name": "p", "definition": "random(1..5#1)", "group": "Ungrouped variables", "description": "", "templateType": "randrange"}, "hp": {"name": "hp", "definition": "[n/2,o/2,p]", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "n": {"name": "n", "definition": "random(-3..3#2)", "group": "Ungrouped variables", "description": "", "templateType": "randrange"}, "gp": {"name": "gp", "definition": "[k,l,m]", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "l": {"name": "l", "definition": "random(-5..5#1)", "group": "Ungrouped variables", "description": "", "templateType": "randrange"}, "k": {"name": "k", "definition": "random(-5..5#1)", "group": "Ungrouped variables", "description": "", "templateType": "randrange"}, "h": {"name": "h", "definition": "[3,2,1]", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "b": {"name": "b", "definition": "random(1..3#1)", "group": "Ungrouped variables", "description": "", "templateType": "randrange"}}, "name": "Q17.(new)", "variable_groups": [], "tags": [], "functions": {}, "parts": [{"showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "marks": 0, "showCorrectAnswer": true, "variableReplacements": [], "gaps": [{"showFeedbackIcon": true, "allowFractions": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain", "scripts": {}, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "mustBeReducedPC": 0, "type": "numberentry", "maxValue": "(hp[a-1])*gp[(h[a-1])-1]", "showCorrectAnswer": true, "variableReplacements": [], "minValue": "(hp[a-1])*gp[(h[a-1])-1]", "correctAnswerFraction": false}], "prompt": "Use the table below to find $f'(\\var{a})$ if $f(x)=g(h(x))$.
\n\n$x$ | \n$g(x)$ | \n$g'(x)$ | \n$h(x)$ | \n$h'(x)$ | \n
---|---|---|---|---|
1 | \n3 | \n$\\var{gp[0]}$ | \n3 | \n$\\var{hp[0]}$ | \n
2 | \n1 | \n$\\var{gp[1]}$ | \n2 | \n$\\var{hp[1]}$ | \n
3 | \n2 | \n$\\var{gp[2]}$ | \n1 | \n$\\var{hp[2]}$ | \n
$f'(\\var{a})=$[[0]]
", "scripts": {}}], "type": "question", "contributors": [{"name": "Patrick Joyce", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1674/"}]}]}], "contributors": [{"name": "Patrick Joyce", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1674/"}]}