// Numbas version: finer_feedback_settings {"name": "Hyperbolic Functions 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "b", "valacc", "val", "tol"], "name": "Hyperbolic Functions 4", "tags": ["Calculus", "Steps", "arccosh", "calculus", "definite integration", "hyperbolic functions", "integral", "integration", "integration by substitution", "inverse hyperbolic functions", "standard integrals", "steps", "substitution"], "preamble": {"css": "", "js": ""}, "advice": "\n
This is the standard integral we use: \\[\\int \\frac{1}{\\sqrt{x^2-1}}\\;dx=\\simplify{arccosh(x)+C}\\]
\nFor this example if we make the substitution $\\displaystyle{x = \\simplify[std]{{b}v/{a}}}$ in our integral then we get:
\n\\[\\begin{eqnarray*} I &=&\\frac{1}{\\var{a}}\\int_{\\var{a}}^{\\var{2*a}}\\frac{1}{\\sqrt{v^2-1}}\\;dv\\\\ &=&\\frac{1}{\\var{a}}\\left[\\simplify{arccosh(v)}\\right]_{\\var{a}}^{\\var{2*a}}\\\\ &=&\\var{val} \\end{eqnarray*} \\] to 2 decimal places.
\n ", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"stepsPenalty": 0, "prompt": "\n$I=\\;\\;$[[0]]
\nInput your answer to $2$ decimal places.
\nShow steps has some information on the standard integral you may need. You will lose no marks in looking at this.
\n ", "marks": 0, "gaps": [{"allowFractions": false, "marks": 3, "maxValue": "val+tol", "minValue": "val-tol", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "steps": [{"showCorrectAnswer": true, "prompt": "Use the standard integral:
\n\\[\\int \\frac{1}{\\sqrt{x^2-1}}\\;dx=\\simplify{arccosh(x)+C}\\]
", "scripts": {}, "type": "information", "marks": 0}], "type": "gapfill"}], "statement": "Use hyperbolic functions to find the value of:
\\[I=\\int_{\\var{b}}^{\\var{2*b}} \\left(\\frac{1}{\\sqrt{\\simplify[std]{{a^2}x^2-{b^2}}}}\\right)\\;dx\\]
30/06/2012:
\n \t\tAdded, edited tags
\n \t\tSlight change to prompt.
\n \t\tCould include standard integral in Show steps (once Show steps is available)
\n \t\t19/07/2012:
\n \t\tAdded description.
\n \t\tChanged Advice on the standard integral - so that it makes sense!
\n \t\tAdded Show steps information on the standard integral.
\n \t\tChecked calculation.
\n \t\tSet new tolerance variable tol=0 for the numeric input.
\n \t\t23/07/2012:
\n \t\t \n \t\tAdded tags.
\n \t\t \n \t\tSolution always requires arccosh(x) and not arcsinh(x) or arctanh(x). Is this on purpose?
\n \t\t\n \t\t
\n \t\t
Question appears to be working correctly.
\n \t\t\n \t\t
\n \t\t", "description": "
Find (hyperbolic substitution):
$\\displaystyle \\int_{b}^{2b} \\left(\\frac{1}{\\sqrt{a^2x^2-b^2}}\\right)\\;dx$