// Numbas version: finer_feedback_settings {"name": "Hyperbolic Functions 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "b", "valacc", "val", "tol"], "name": "Hyperbolic Functions 4", "tags": ["Calculus", "Steps", "arccosh", "calculus", "definite integration", "hyperbolic functions", "integral", "integration", "integration by substitution", "inverse hyperbolic functions", "standard integrals", "steps", "substitution"], "preamble": {"css": "", "js": ""}, "advice": "\n

This is the standard integral we use: \\[\\int \\frac{1}{\\sqrt{x^2-1}}\\;dx=\\simplify{arccosh(x)+C}\\]

\n

For this example if we make the substitution $\\displaystyle{x = \\simplify[std]{{b}v/{a}}}$ in our integral then we get:

\n

\\[\\begin{eqnarray*} I &=&\\frac{1}{\\var{a}}\\int_{\\var{a}}^{\\var{2*a}}\\frac{1}{\\sqrt{v^2-1}}\\;dv\\\\ &=&\\frac{1}{\\var{a}}\\left[\\simplify{arccosh(v)}\\right]_{\\var{a}}^{\\var{2*a}}\\\\ &=&\\var{val} \\end{eqnarray*} \\] to 2 decimal places.

\n ", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"stepsPenalty": 0, "prompt": "\n

$I=\\;\\;$[[0]]

\n

Input your answer to $2$ decimal places.

\n

Show steps has some information on the standard integral you may need. You will lose no marks in looking at this.

\n ", "marks": 0, "gaps": [{"allowFractions": false, "marks": 3, "maxValue": "val+tol", "minValue": "val-tol", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "steps": [{"showCorrectAnswer": true, "prompt": "

Use the standard integral:

\n

\\[\\int \\frac{1}{\\sqrt{x^2-1}}\\;dx=\\simplify{arccosh(x)+C}\\]

", "scripts": {}, "type": "information", "marks": 0}], "type": "gapfill"}], "statement": "

Use hyperbolic functions to find the value of:
\\[I=\\int_{\\var{b}}^{\\var{2*b}} \\left(\\frac{1}{\\sqrt{\\simplify[std]{{a^2}x^2-{b^2}}}}\\right)\\;dx\\]

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "b": {"definition": "random(1..8)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "val": {"definition": "precround(valacc,2)", "templateType": "anything", "group": "Ungrouped variables", "name": "val", "description": ""}, "valacc": {"definition": "(1/a)*ln((2*a+(4a^2-1)^(1/2))/(a+(a^2-1)^(1/2)))", "templateType": "anything", "group": "Ungrouped variables", "name": "valacc", "description": ""}, "tol": {"definition": "0", "templateType": "anything", "group": "Ungrouped variables", "name": "tol", "description": ""}}, "metadata": {"notes": "\n \t\t

30/06/2012:

\n \t\t

Added, edited tags

\n \t\t

Slight change to prompt.

\n \t\t

Could include standard integral in Show steps (once Show steps is available)

\n \t\t

19/07/2012:

\n \t\t

Added description.

\n \t\t

Changed Advice on the standard integral - so that it makes sense!

\n \t\t

Added Show steps information on the standard integral.

\n \t\t

Checked calculation.

\n \t\t

Set new tolerance variable tol=0 for the numeric input.

\n \t\t

23/07/2012:

\n \t\t

\n \t\t

Added tags.

\n \t\t

\n \t\t

Solution always requires arccosh(x) and not arcsinh(x) or arctanh(x). Is this on purpose?

\n \t\t

 

\n \t\t

 

\n \t\t

Question appears to be working correctly.

\n \t\t

 

\n \t\t



\n \t\t

 

\n \t\t", "description": "

Find (hyperbolic substitution):
$\\displaystyle \\int_{b}^{2b} \\left(\\frac{1}{\\sqrt{a^2x^2-b^2}}\\right)\\;dx$

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "resources": []}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}