// Numbas version: finer_feedback_settings {"name": "Julie's copy of Indefinite integral by substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variable_groups": [], "metadata": {"notes": "\n\t\t \t\t \t\t
2/08/2012:
\n\t\t \t\t \t\tAdded tags.
\n\t\t \t\t \t\tAdded description.
\n\t\t \t\t \t\tChecked calculation. OK.
\n\t\t \t\t \t\tAdded information about Show steps in prompt content area.
\n\t\t \t\t \t\tAdded decimal point as forbidden string and included message in prompt about not entering decimals.
\n\t\t \t\t \t\tGot rid of a redundant ruleset. !noLeadingMinus added to std ruleset.
\n\t\t \t\t \t\tNote that the choice of variables means that the argument of the log answer is always $\\gt 0$ so no need to use abs.
\n\t\t \t\t \t\t\n\t\t \t\t \n\t\t \n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "
Find $\\displaystyle \\int \\frac{2ax + b}{ax ^ 2 + bx + c}\\;dx$
"}, "showQuestionGroupNames": false, "advice": "\n\tThis exercise is best solved by using substitution.
\n\tNote that the numerator $\\simplify[std]{{2 * a} * x + {b}}$ of \\[\\simplify[std]{({2 * a} * x + {b}) / ({a} * x ^ 2 + {b} * x + {c})}\\] is the derivative of the denominator $\\simplify[std]{{a} * x ^ 2 + {b} * x + {c}}$
\n\tSo if you use as your substitution $u=\\simplify[std]{{a} * (x ^ 2) + ({b} * x) + {c}}$ you then have $\\simplify[std]{ du = ({2 * a} * x + {b}) * dx}$
\n\tHence we can replace $\\simplify[std]{ ({2 * a} * x + {b}) * dx}$ by $du$
\n\tHence the integral becomes:
\n\t\\[\\begin{eqnarray*} I&=&\\int\\;\\frac{du}{u}\\\\ &=&\\ln(|u|)+C\\\\ &=& \\simplify[std]{ln(abs({a} * (x ^ 2) + ({b} * x) + {c}))+C} \\end{eqnarray*}\\]
A Useful Result
This example can be generalised.
Suppose \\[I = \\int\\; \\frac{f'(x)}{f(x)}\\;dx\\]
The using the substitution $u=f(x)$ we find that $du=f'(x)\\;dx$ and so using the same method as above:
\\[I = \\int \\frac{du}{u} = \\ln(|u|)+ C = \\ln(|f(x)|)+C\\]
\\[I=\\simplify[std]{Int(({2 * a} * x + {b}) / ({a} * x ^ 2 + {b} * x + {c}),x)}\\]
\n\t\t\t$I=\\;$[[0]]
\n\t\t\tInput the constant of integration as $C$.
\n\t\t\tInput all numbers as integers or fractions not as decimals.
\n\t\t\tClick on Show steps if you need help. You will lose 1 mark if you do so.
\n\t\t\t \n\t\t\t \n\t\t\t", "stepspenalty": 1.0, "marks": 0.0, "steps": [{"prompt": "Try the substitution $u=\\simplify[std]{{a} * (x ^ 2) + ({b} * x) + {c}}$
", "marks": 0.0, "type": "information"}], "type": "gapfill", "gaps": [{"type": "jme", "checkingaccuracy": 0.001, "showpreview": true, "answersimplification": "std", "answer": "ln(abs((({a} * (x ^ 2)) + ({b} * x) + {c})))+C", "notallowed": {"strings": ["."], "partialcredit": 0.0, "message": "Do not input numbers as decimals, only as integers without the decimal point, or fractions
", "showstrings": false}, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "marks": 3.0, "checkingtype": "absdiff", "checkvariablenames": false, "expectedvariablenames": []}]}], "question_groups": [{"pickQuestions": 0, "pickingStrategy": "all-ordered", "name": "", "questions": []}], "type": "question", "extensions": [], "statement": "\n\tFind the following integral.
\n\tInput the constant of integration as $C$.
\n\tInput all numbers as integers or fractions.
\n\t\n\t \n\t \n\t", "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}