// Numbas version: exam_results_page_options {"name": "CSS Lemma environment", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"showfrontpage": false, "preventleave": false, "allowregen": true}, "question_groups": [{"questions": [{"metadata": {"licence": "Creative Commons Attribution 4.0 International", "notes": "", "description": "

Defines a CSS class in the preamble which styles the \"Lemma\" environment, used in the statement.

"}, "ungrouped_variables": [], "contributors": [{"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/", "name": "Christian Lawson-Perfect"}], "advice": "", "question_groups": [{"pickQuestions": 0, "questions": [], "name": "", "pickingStrategy": "all-ordered"}], "tags": ["demo"], "type": "question", "variables": {}, "variable_groups": [], "functions": {}, "rulesets": {}, "preamble": {"css": ".lemma:before {\n content: 'Lemma';\n font-size: 1.25em;\n font-weight: bold;\n}\n.lemma > * {\n font-style: italic;\n font-family: serif;\n margin-left: 1em;\n}", "js": ""}, "name": "CSS Lemma environment", "statement": "

The following lemmas are styled using the CSS preamble.

\n
\n

Let $p$ be a prime number, and assume $p$ divides the product of two integers $a$ and $b$.
Then $p|a$ or $p|b$ (or both).

\n
\n
\n

Let $D = \\{z : |z| \\lt 1\\}$ be the open unit disk in the complex plane $\\mathbb{C}$ centered at the origin and let $f : D \\to D$ be a holomorphic map such that $f(0) = 0$.

\n

Then, $|f(z)| \\leq |z|$ for all $z$ in $D$ and $|f'(0)| \\leq 1$.

\n

Moreover, if $|f(z)| = |z|$ for some non-zero $z$ or $|f'(0)| = 1$, then $f(z) = az$ for some $a$ in $\\mathbb{C}$ with $|a| = 1$.

\n
", "variablesTest": {"condition": "", "maxRuns": 100}, "parts": [{"marks": 0, "type": "information", "scripts": {}, "showCorrectAnswer": true}], "showQuestionGroupNames": false}], "pickingStrategy": "all-ordered"}], "contributors": [{"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/", "name": "Christian Lawson-Perfect"}]}