// Numbas version: finer_feedback_settings {"name": "Cheryl's copy of SUVAT equations question 2", "extensions": [], "custom_part_types": [], "resources": [["question-resources/truck_image.png", "/srv/numbas/media/question-resources/truck_image.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"css": "", "js": ""}, "functions": {}, "parts": [{"minValue": "(u+v)*0.5*t", "prompt": "
Find the distance in $\\mathrm{m}$ that the truck travels in these $\\var{t}$ seconds.
", "showPrecisionHint": false, "variableReplacementStrategy": "originalfirst", "maxValue": "(u+v)*0.5*t", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "marks": 1, "correctAnswerFraction": false, "type": "numberentry", "allowFractions": false}, {"minValue": "(v-u)/t", "prompt": "Find the acceleration in $\\mathrm{ms^{-2}}$ of the truck in these $\\var{t}$ seconds.
", "showPrecisionHint": false, "variableReplacementStrategy": "originalfirst", "maxValue": "(v-u)/t", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "marks": 1, "correctAnswerFraction": true, "type": "numberentry", "allowFractions": true}], "variables": {"t": {"definition": "random(2..15#1)", "name": "t", "templateType": "randrange", "group": "Ungrouped variables", "description": "time
"}, "v": {"definition": "random(7..15#1)", "name": "v", "templateType": "randrange", "group": "Ungrouped variables", "description": "final velocity
"}, "u": {"definition": "random(2..6#1)", "name": "u", "templateType": "randrange", "group": "Ungrouped variables", "description": "initial velocity
"}}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": ""}, "name": "Cheryl's copy of SUVAT equations question 2", "ungrouped_variables": ["u", "v", "t"], "variablesTest": {"maxRuns": 100, "condition": ""}, "tags": [], "question_groups": [{"pickingStrategy": "all-ordered", "pickQuestions": 0, "name": "", "questions": []}], "variable_groups": [], "rulesets": {}, "advice": "You start by writing down the values you know and the values you need to find.
\n$a =$ $?$, $u=\\var{u},$ $t=\\var{t},$ $v=\\var{v},$ $s=$ $?$
\na) You need the distance $s \\mathrm{m}$ and you know $u, v$ and $t$ so you can use the equation $s= \\left(\\frac{u+v}{2}\\right)t$. \\begin{align} s &= \\left(\\frac{u+v}{2}\\right)t, \\\\
&= \\left(\\frac{\\var{u}+\\var{v}}{2}\\right) \\times \\var{t}, \\\\
&= \\var{(u+v)*0.5*t} \\mathrm{m}.\\end{align}
The distance the truck travels is $\\var{(u+v)*0.5*t}$ metres.
\nb) You need the acceleration, $a \\mathrm{ms^{-2}}$, and you know $u$,$v$ and $t$ so you can use the equation $v=u + at$ rearranged for $a$.
\n\\begin{align} a &= \\left(\\frac{v-u}{t}\\right), \\\\
&= \\left(\\frac{\\var{v}-\\var{u}}{\\var{t}}\\right), \\\\
&= \\frac{\\var{(v-u)}}{\\var{t}} \\mathrm{ms^{-2}}. \\end{align}
The acceleration of the truck is $\\frac{\\var{(v-u)}}{\\var{t}} \\mathrm{ms^{-2}}$.
A truck accelerates along a straight road at a constant rate from a speed of $\\var{u} \\mathrm{ms^{-1}}$ to $\\var{v} \\mathrm{ms^{-1}}$ in $\\var{t}$ seconds.
\n\n", "type": "question", "contributors": [{"name": "Cheryl Voake-Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1763/"}]}]}], "contributors": [{"name": "Cheryl Voake-Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1763/"}]}