// Numbas version: finer_feedback_settings {"name": "Mark's copy of Matrix arithmetic", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"b21": {"group": "Ungrouped variables", "templateType": "anything", "name": "b21", "definition": "{a12}*{a11}+{a22}*{a12}+{k1}*{a12}", "description": ""}, "b11": {"group": "Ungrouped variables", "templateType": "anything", "name": "b11", "definition": "{a11}^2+{a12}*{a21}+{k1}*{a11}+{k2}", "description": ""}, "b12": {"group": "Ungrouped variables", "templateType": "anything", "name": "b12", "definition": "{a21}*{a11}+{a22}*{a21}+{k1}*{a21}", "description": ""}, "a12": {"group": "Ungrouped variables", "templateType": "randrange", "name": "a12", "definition": "random(0..10#1)", "description": ""}, "b22": {"group": "Ungrouped variables", "templateType": "anything", "name": "b22", "definition": "{a21}*{a12}+{a22}^2+{k1}*{a22}+{k2}", "description": ""}, "k2": {"group": "Ungrouped variables", "templateType": "randrange", "name": "k2", "definition": "random(6..12#1)", "description": ""}, "a21": {"group": "Ungrouped variables", "templateType": "randrange", "name": "a21", "definition": "random(2..9#1)", "description": ""}, "a22": {"group": "Ungrouped variables", "templateType": "randrange", "name": "a22", "definition": "random(11..21#1)", "description": ""}, "k1": {"group": "Ungrouped variables", "templateType": "randrange", "name": "k1", "definition": "random(2..7#1)", "description": ""}, "a11": {"group": "Ungrouped variables", "templateType": "randrange", "name": "a11", "definition": "random(1..10#1)", "description": ""}}, "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "extensions": [], "parts": [{"prompt": "
Evaluate the following expression:
\n\\(\\left(A^2+\\var{k1}A+\\var{k2}I\\right)^t\\) = [[0]]
", "gaps": [{"scripts": {}, "allowResize": false, "correctAnswerFractions": false, "showFeedbackIcon": true, "markPerCell": false, "marks": 1, "numRows": "2", "type": "matrix", "allowFractions": false, "showCorrectAnswer": true, "tolerance": 0, "numColumns": "2", "variableReplacements": [], "correctAnswer": "matrix([\n [b11,b12],\n [b21,b22]\n]) ", "variableReplacementStrategy": "originalfirst"}], "scripts": {}, "showCorrectAnswer": true, "marks": 0, "type": "gapfill", "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}], "statement": "Given the matrix:
\n\\(A=\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\)
\n", "tags": [], "advice": "\\(A=\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\)
\n\\(A^2=\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\)
\nRemember multiplication of matrices is carried out by multiplying the rows of the first matrix by the columns of the second matrix.
\n\\(A^2=\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}=\\begin{pmatrix}\\var{a11}*\\var{a11}+\\var{a12}*\\var{a21}&\\var{a11}*\\var{a12}+\\var{a12}*\\var{a22}\\\\ \\var{a21}*\\var{a11}+\\var{a22}*\\var{a21}&\\var{a21}*\\var{a12}+\\var{a22}*\\var{a22}\\end{pmatrix}\\)
\n\\(A^2=\\begin{pmatrix}\\simplify{{a11}*{a11}+{a12}*{a21}}&\\simplify{{a11}*{a12}+{a12}*{a22}}\\\\ \\simplify{{a21}*{a11}+{a22}*{a21}}&\\simplify{{a21}*{a12}+{a22}*{a22}}\\end{pmatrix}\\)
\n\\(\\var{k1}A=\\begin{pmatrix} \\var{k1}*\\var{a11}& \\var{k1}*\\var{a12}\\\\ \\var{k1}*\\var{a21}&\\var{k1}*\\var{a22}\\end{pmatrix}=\\begin{pmatrix} \\simplify{{k1}*{a11}}& \\simplify{{k1}*{a12}}\\\\ \\simplify{{k1}*{a21}}&\\simplify{{k1}*{a22}}\\end{pmatrix}\\)
\n\\(\\left(A^2+\\var{k1}A+\\var{k2}I\\right)^t=\\left(\\begin{pmatrix}\\simplify{{a11}*{a11}+{a12}*{a21}}&\\simplify{{a11}*{a12}+{a12}*{a22}}\\\\ \\simplify{{a21}*{a11}+{a22}*{a21}}&\\simplify{{a21}*{a12}+{a22}*{a22}}\\end{pmatrix}+\\begin{pmatrix} \\simplify{{k1}*{a11}}& \\simplify{{k1}*{a12}}\\\\ \\simplify{{k1}*{a21}}&\\simplify{{k1}*{a22}}\\end{pmatrix}+\\begin{pmatrix} \\var{k2}&0\\\\0&\\var{k2}\\end{pmatrix}\\right)^t\\)
\n\\(\\left(A^2+\\var{k1}A+\\var{k2}I\\right)^t=\\begin{pmatrix}\\simplify{{a11}*{a11}+{a12}*{a21}+{k1}{a11}+{k2}}&\\simplify{{a11}*{a12}+{a12}*{a22}+{k1}*{a12}}\\\\ \\simplify{{a21}*{a11}+{a22}*{a21}+{k1}*{a21}}&\\simplify{{a21}*{a12}+{a22}*{a22}+{k1}*{a22}+{k2}}\\end{pmatrix}^t\\)
\n\\(\\left(A^2+\\var{k1}A+\\var{k2}I\\right)^t=\\begin{pmatrix}\\simplify{{a11}*{a11}+{a12}*{a21}+{k1}{a11}+{k2}}&\\simplify{{a21}*{a11}+{a22}*{a21}+{k1}*{a21}}\\\\ \\simplify{{a11}*{a12}+{a12}*{a22}+{k1}*{a12}}&\\simplify{{a21}*{a12}+{a22}*{a22}+{k1}*{a22}+{k2}}\\end{pmatrix}\\)
", "ungrouped_variables": ["a11", "a12", "a21", "a22", "k1", "k2", "b11", "b12", "b21", "b22"], "rulesets": {}, "variable_groups": [], "name": "Mark's copy of Matrix arithmetic", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "This question tests students knowledge of basic matrix arithmetic.
"}, "preamble": {"js": "", "css": ""}, "type": "question", "contributors": [{"name": "Mark Hodds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/510/"}]}]}], "contributors": [{"name": "Mark Hodds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/510/"}]}