// Numbas version: exam_results_page_options {"name": "Jamie's copy of Graphing logarithms of the form y=log_{b}(x) with b>1", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "

The following questions will gauge your understanding of logarithms and how to graph them. 

\n

The logarithm you will be working with for this question is \\[y=\\log_{\\var{b}}(x).\\]

\n

", "variables": {"b": {"group": "Ungrouped variables", "name": "b", "templateType": "anything", "description": "", "definition": "random(2..10)"}}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "

The easiest type of exponential to graph where the base is greater than 1 and no transformations take place.

"}, "parts": [{"variableReplacements": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "marks": 0, "showFeedbackIcon": true, "prompt": "

The $x$-intercept of $y=\\log_{\\var{b}}(x)$ is the point $\\large($[[0]], 0$\\large)$.

", "showCorrectAnswer": true, "gaps": [{"correctAnswerStyle": "plain", "marks": 1, "variableReplacementStrategy": "originalfirst", "maxValue": "1", "variableReplacements": [], "showCorrectAnswer": true, "minValue": "1", "type": "numberentry", "correctAnswerFraction": false, "showFeedbackIcon": true, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "scripts": {}, "allowFractions": false}], "type": "gapfill"}, {"variableReplacements": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "marks": 0, "showFeedbackIcon": true, "prompt": "

Another easily found point on the curve is $\\large($[[0]], $\\large1 )$.

", "showCorrectAnswer": true, "gaps": [{"correctAnswerStyle": "plain", "marks": 1, "variableReplacementStrategy": "originalfirst", "maxValue": "{b}", "variableReplacements": [], "showCorrectAnswer": true, "minValue": "{b}", "type": "numberentry", "correctAnswerFraction": true, "showFeedbackIcon": true, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "scripts": {}, "allowFractions": true}], "type": "gapfill"}, {"variableReplacements": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "marks": 0, "showFeedbackIcon": true, "prompt": "

Given $y=\\log_{\\var{b}}(x)$, everytime $x$ increases by a factor of $\\var{b}$, $y$  [[0]].

", "showCorrectAnswer": true, "gaps": [{"shuffleChoices": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "showCorrectAnswer": true, "type": "1_n_2", "matrix": ["1", 0, 0, 0, "0", 0], "showFeedbackIcon": true, "maxMarks": 0, "displayColumns": 0, "scripts": {}, "distractors": ["", "", "", "", "", ""], "displayType": "dropdownlist", "minMarks": 0, "choices": ["

increases by 1.

", "

decreases by 1.

", "

increases by {b-1}.

", "

decreases by {b-1}.

", "

increases by a factor of {b}.

", "

decreases by a factor of {b}.

"]}], "type": "gapfill"}, {"variableReplacements": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "marks": 0, "showFeedbackIcon": true, "prompt": "

As $x$ increases without bound, [[0]]

", "showCorrectAnswer": true, "gaps": [{"shuffleChoices": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "showCorrectAnswer": true, "type": "1_n_2", "matrix": [0, 0, "1", 0], "showFeedbackIcon": true, "maxMarks": 0, "displayColumns": "1", "scripts": {}, "distractors": ["", "", "", ""], "displayType": "radiogroup", "minMarks": 0, "choices": ["

$y$ approaches $0$.

", "

$y$ decreases without bound.

", "

$y$ increases without bound.

", "

$y$ approaches $\\var{b}$.

"]}], "type": "gapfill"}, {"shuffleChoices": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "showCorrectAnswer": true, "type": "1_n_2", "matrix": ["1", 0, 0, 0], "showFeedbackIcon": true, "maxMarks": 0, "displayColumns": "2", "prompt": "

Which graph best represents $y=\\log_{\\var{b}}(x)$?

", "scripts": {}, "distractors": ["", "", "", ""], "displayType": "radiogroup", "minMarks": 0, "choices": ["

{graph1(1)}

", "

{graph1(2)}

", "

{graph1(3)}

", "

{graph1(4)}

"]}], "tags": [], "ungrouped_variables": ["b"], "functions": {"graph1": {"parameters": [["quad", "number"]], "definition": "var div = Numbas.extensions.jsxgraph.makeBoard('300px','300px',{boundingBox:[-12,12,12,-12],grid:true,axis:false});\nvar board = div.board;\n\n// create the x-axis.\nvar xaxis = board.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = board.create('ticks',[xaxis,2],{\n drawLabels: true,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = board.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\nvar yticks = board.create('ticks',[yaxis,2],{\ndrawLabels: true,\nlabel: {offset: [-20, 0]},\nminorTicks: 0\n});\n\nb = Numbas.jme.unwrapValue(scope.variables.b);\n\n\n\nif(quad==1){board.create('functiongraph',[function(x){ return Math.log(x)/Math.log(b)}],{strokeWidth:2});}\nif(quad==2){board.create('functiongraph',[function(x){ return Math.log(-x)/Math.log(b)}],{strokeWidth:2});}\nif(quad==3){board.create('functiongraph',[function(x){ return -Math.log(x)/Math.log(b)}],{strokeWidth:2});}\nif(quad==4){board.create('functiongraph',[function(x){ return -Math.log(-x)/Math.log(b)}],{strokeWidth:2});}\n\nreturn div;", "type": "html", "language": "javascript"}}, "extensions": ["jsxgraph"], "rulesets": {}, "preamble": {"js": "", "css": ""}, "advice": "

This question assumes you understand the definition and the laws of logarithms.

\n

a) To find the $x$-intercept, substitute $y=0$ into the equation: $0=\\log_{\\var{b}}(x)$ which is equivalent to $\\var{b}^0=x$, i.e. $x=1$. Therefore, the $x$-intercept is the point $(1,0)$.

\n

b) Substitute $y=1$ into the equation: $1=\\log_{\\var{b}}(x)$ which is equivalent to $\\var{b}^1=x$, i.e. $x=\\var{b}$. Therefore, another easily found point is $(\\var{b},1)$.

\n

c) Let's investigate what happens to the value of $y$ when the value of $x$ is increased by a factor of $\\var{b}$:

\n

\\[\\log_{\\var{b}}(\\var{b}x)=\\log_{\\var{b}}(\\var{b})+\\log_{\\var{b}}(x)=1+\\log_{\\var{b}}(x)\\]

\n

This is the old $y$ value plus 1, so we can say that $y$ is increased by 1.

\n

d) As $x$ gets larger and larger, $y$ gets larger and larger. Even though the rate of increase slows, $y$ continues to grow without bound.

\n

e) An asymptote is a line or curve that approaches a given curve arbitrarily closely. For the curve $y=\\log_{\\var{b}}(x)$ the closer $x$ gets to zero (approaching from the right), the smaller $y$ gets (without bound). In other words, as $x$ approaches $0$ from the right, $y$ approaches negative infinity. This means that the asymptote for $y=\\log_{\\var{b}}(x)$ is the line $x=0$ (the $y$-axis).

\n

f) Given all the information above, it should be clear that the graph should look like 

\n

{graph1(1)}

", "name": "Jamie's copy of Graphing logarithms of the form y=log_{b}(x) with b>1", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "type": "question", "contributors": [{"name": "Jamie Wood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/79/"}]}]}], "contributors": [{"name": "Jamie Wood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/79/"}]}