// Numbas version: exam_results_page_options {"name": "Richard's copy of 2: Simultaneous Equations - Velocity of Mountain River", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "statement": "

The velocity of a small stone in two similar rivers can be found using the equations below. The equations differ slightly due to the difference in slope between the two rivers, hence resulting in different velocities. It is possible to find the slope at which the two different rivers have equal velocity by solving simultaneously.

\n

River one: v=$\\frac{0.37g^{0.33}Q^{0.34}S^{0.20}}{{d_{90}}^{0.35}}$

\n

River two: v=$\\frac{0.96g^{0.36}Q^{0.29}S^{0.35}}{{d_{90}}^{0.23}}$

\n

where;
$v$ = velocity of the small stone ($ms^{-1}$)
$g$ = acceleration due to gravity  ($9.81ms^{-2}$)
$Q$ = discharge (volume rate of water flow ($m^3s^{-1}$)
$S$ = slope of the river bed
$d_{90}$ = grain size of the small stone ($m$)

", "advice": "

You have two unknowns: velocity and slope.

\n

You are trying to work out at which slopes the two rivers have the same velocity. Therefore if you substitute equation one into equation two you are left with an equation where the velocity is equal.

\n

River one: $v=\\frac{0.37g^{0.33}Q^{0.34}S^{0.20}}{{d_{90}}^{0.35}}$

\n

River two: $v=\\frac{0.96g^{0.36}Q^{0.29}S^{0.35}}{{d_{90}}^{0.23}}$

\n

Therefore: $\\frac{0.37g^{0.33}Q^{0.34}S^{0.20}}{{d_{90}}^{0.35}}=\\frac{0.96g^{0.36}Q^{0.29}S^{0.35}}{{d_{90}}^{0.23}}$

\n

Now you only have one unknown: slope.

\n\n

Step one: Multiply both sides by ${d_{90}}^{0.23}$

\n

$\\frac{0.37g^{0.33}Q^{0.34}S^{0.20}{d_{90}}^{0.23}}{{d_{90}}^{0.35}}={0.96g^{0.36}Q^{0.29}S^{0.35}}$

\n

Step two: Divide both sides by $0.96g^{0.36}Q^{0.29}$

\n

$\\frac{0.37g^{0.33}Q^{0.34}S^{0.20}{d_{90}}^{0.23}}{{d_{90}}^{0.35}0.96g^{0.36}Q^{0.29}}= S^{0.35}$

\n

Step three: Divide both sides by $S^{0.20}$

\n

$\\frac{0.37g^{0.33}Q^{0.34}{d_{90}}^{0.23}}{{d_{90}}^{0.35}0.96g^{0.36}Q^{0.29}}= \\frac{S^{0.35}}{S^{0.20}}$

\n

Step four:  Cancel to give $S$ alone - $S^{0.35}\\div S^{0.20} = S^{0.15}$

\n

$\\frac{0.37g^{0.33}Q^{0.34}{d_{90}}^{0.23}}{{d_{90}}^{0.35}0.96g^{0.36}Q^{0.29}}= S^{0.15}$

\n

Step five: Root both sides with respect to $0.15$ to give $S$

\n

$\\sqrt[0.15]{\\frac{0.37g^{0.33}Q^{0.34}{d_{90}}^{0.23}}{{d_{90}}^{0.35}0.96g^{0.36}Q^{0.29}}}= S$

\n

Step six: Substitute in the given values

\n

$\\sqrt[0.15]{\\frac{0.37\\times\\var{g}^{0.33}\\var{Q}^{0.34}{\\var{d90}^{0.23}}}{\\var{d90}^{0.35}0.96\\times\\var{g}^{0.36}\\var{Q}^{0.29}}}= S$

\n

Step seven:  Calculate to give a value for $S$

\n

$\\var{s}= S$

\n

Step eight: Round to three significant figures

\n

$=\\var{s3f}$

", "variables": {"g": {"name": "g", "definition": "9.81", "group": "Ungrouped variables", "templateType": "number", "description": ""}, "s3f": {"name": "s3f", "definition": "siground({s},3)", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "ssquared": {"name": "ssquared", "definition": "{s1}/{s2}", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "q": {"name": "q", "definition": "random(1..100#1)", "group": "Ungrouped variables", "templateType": "randrange", "description": ""}, "s2": {"name": "s2", "definition": "{d90}^(0.35)*0.96*{g}^(0.36)*{Q}^(0.29)", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "s1": {"name": "s1", "definition": "0.37*{g}^(0.33)*{q}^(0.34)*{d90}^(0.23)", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "d90": {"name": "d90", "definition": "random(0.00005..0.02#0.0005)", "group": "Ungrouped variables", "templateType": "randrange", "description": ""}, "s": {"name": "s", "definition": "{ssquared}^(1/0.15)", "group": "Ungrouped variables", "templateType": "anything", "description": ""}}, "rulesets": {}, "tags": [], "preamble": {"js": "", "css": ""}, "extensions": [], "name": "Richard's copy of 2: Simultaneous Equations - Velocity of Mountain River", "functions": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "ungrouped_variables": ["d90", "q", "g", "s1", "s2", "ssquared", "s", "s3f"], "metadata": {"description": "

Solve simultaneous equations,

\n

Need to know indices and logarithm

", "licence": "Creative Commons Attribution 4.0 International"}, "parts": [{"variableReplacementStrategy": "originalfirst", "type": "gapfill", "showFeedbackIcon": true, "marks": 0, "showCorrectAnswer": true, "stepsPenalty": 0, "steps": [{"variableReplacementStrategy": "originalfirst", "type": "information", "showFeedbackIcon": true, "marks": 0, "showCorrectAnswer": true, "variableReplacements": [], "scripts": {}, "prompt": "

You have two unknowns: velocity and slope.

\n

You are trying to work out at which slopes the two rivers have the same velocity. Therefore if you substitute equation one into equation two you are left with an equation where the velocity is equal.

\n

River one: $v=\\frac{0.37g^{0.33}Q^{0.34}S^{0.20}}{{d_{90}}^{0.35}}$

\n

River two: $v=\\frac{0.96g^{0.36}Q^{0.29}S^{0.35}}{{d_{90}}^{0.23}}$

\n

Therefore: $\\frac{0.37g^{0.33}Q^{0.34}S^{0.20}}{{d_{90}}^{0.35}}=\\frac{0.96g^{0.36}Q^{0.29}S^{0.35}}{{d_{90}}^{0.23}}$

\n

Now you only have one unknown: slope.

\n\n

Hint: you will need to recall your knowledge of indices for this question.

"}], "gaps": [{"showPrecisionHint": false, "strictPrecision": true, "precisionPartialCredit": 0, "maxValue": "{S}", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "correctAnswerStyle": "plain", "variableReplacements": [], "precision": "3", "allowFractions": false, "minValue": "{S}", "type": "numberentry", "showFeedbackIcon": true, "marks": 1, "notationStyles": ["plain", "en", "si-en"], "precisionType": "sigfig", "mustBeReducedPC": 0, "precisionMessage": "You have not given your answer to the correct precision.", "scripts": {}, "correctAnswerFraction": false}, {"maxValue": "", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "correctAnswerStyle": "plain", "variableReplacements": [], "allowFractions": false, "minValue": "", "type": "numberentry", "showFeedbackIcon": true, "marks": 1, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "scripts": {}, "correctAnswerFraction": false}], "variableReplacements": [], "scripts": {}, "prompt": "

The two rivers have the same discharge of $\\var{q}m^3s^{-1}$ and in both rivers, the small stone has a grain size of $\\var{d90}m$.

\n

What slope (greater than zero) gives a velocity of the small stone that is the same in both rivers? Give you answer to 3 significant figures.

\n

[[0]]

"}], "type": "question", "contributors": [{"name": "Richard Wilman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1618/"}]}]}], "contributors": [{"name": "Richard Wilman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1618/"}]}