// Numbas version: exam_results_page_options {"name": "Jamie's copy of Graphing exponentials of the form y=b^x with b>1", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {"graph1": {"type": "html", "parameters": [["quad", "number"]], "definition": "var div = Numbas.extensions.jsxgraph.makeBoard('300px','300px',{boundingBox:[-12,12,12,-12],grid:true,axis:false});\nvar board = div.board;\n\n// create the x-axis.\nvar xaxis = board.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = board.create('ticks',[xaxis,2],{\n drawLabels: true,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = board.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\nvar yticks = board.create('ticks',[yaxis,2],{\ndrawLabels: true,\nlabel: {offset: [-20, 0]},\nminorTicks: 0\n});\n\nb = Numbas.jme.unwrapValue(scope.variables.b);\n\n\n\nif(quad==1){board.create('functiongraph',[function(x){ return Math.pow(b,x)}],{strokeWidth:2});}\nif(quad==2){board.create('functiongraph',[function(x){ return Math.pow(1/b,x)}],{strokeWidth:2});}\nif(quad==3){board.create('functiongraph',[function(x){ return -Math.pow(1/b,x)}],{strokeWidth:2});}\nif(quad==4){board.create('functiongraph',[function(x){ return -Math.pow(b,x)}],{strokeWidth:2});}\n\nreturn div;", "language": "javascript"}}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "
The easiest type of exponential to graph where the base is greater than 1 and no transformations take place.
"}, "tags": [], "ungrouped_variables": ["b"], "variables": {"b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "name": "b"}}, "statement": "The following questions will gauge your understanding of exponentials and how to graph them.
\nThe exponential you will be working with for this question is \\[y=\\var{b}^x.\\]
\n", "extensions": ["jsxgraph"], "rulesets": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "a) To find the $y$-intercept, substitute $x=0$ into the equation: $y=\\var{b}^0=1$. Therefore, the $y$-intercept is the point $(0,1)$.
\nb) Substitute $x=1$ into the equation: $y=\\var{b}^1=\\var{b}$. Therefore, another easily found point is $(1,\\var{b})$.
\nc) Let's investigate what happens to the value of $y$ when we add 1 to the value of $x$:
\n\\[\\var{b}^{x+1}=\\var{b}^x\\var{b}^1=\\var{b}^x\\var{b}\\] That is, the old $y$ value is multiplied by $\\var{b}$, so we can say that $y$ is increased by a factor of $\\var{b}$.
\nd) Since $y=\\var{b}^x$ is an exponential and as $x$ increases $y$ increases without bound, we call this exponential growth.
\ne) An asymptote is a line or curve that approaches a given curve arbitrarily closely. For the curve $y=\\var{b}^x$ the smaller $x$ gets, the closer $y$ gets to $0$. In other words as $x$ approaches negative infinity, $y$ approaches $0$. This means that the asymptote for $y=\\var{b}^x$ is the line $y=0$ (the $x$-axis).
\nf) Given all the information above, it should be clear that the graph should look like
\n{graph1(1)}
", "parts": [{"gaps": [{"type": "numberentry", "showFeedbackIcon": true, "minValue": "1", "marks": 1, "showCorrectAnswer": true, "allowFractions": false, "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "mustBeReduced": false, "scripts": {}, "notationStyles": ["plain", "en", "si-en"], "maxValue": "1", "variableReplacements": []}], "showCorrectAnswer": true, "showFeedbackIcon": true, "prompt": "The $y$-intercept of $y=\\var{b}^x$ is the point $\\large($0,[[0]]$\\large)$.
", "variableReplacementStrategy": "originalfirst", "marks": 0, "type": "gapfill", "scripts": {}, "variableReplacements": []}, {"gaps": [{"type": "numberentry", "showFeedbackIcon": true, "minValue": "{b}", "marks": 1, "showCorrectAnswer": true, "allowFractions": true, "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": true, "mustBeReduced": false, "scripts": {}, "notationStyles": ["plain", "en", "si-en"], "maxValue": "{b}", "variableReplacements": []}], "showCorrectAnswer": true, "showFeedbackIcon": true, "prompt": "Another easily found point on the curve is ${\\large(}1,$ [[0]]$\\large)$.
", "variableReplacementStrategy": "originalfirst", "marks": 0, "type": "gapfill", "scripts": {}, "variableReplacements": []}, {"gaps": [{"type": "1_n_2", "showFeedbackIcon": true, "matrix": [0, 0, 0, 0, "1", 0], "displayColumns": 0, "marks": 0, "showCorrectAnswer": true, "choices": ["increases by 1.
", "decreases by 1.
", "increases by {b-1}.
", "decreases by {b-1}.
", "increases by a factor of {b}.
", "decreases by a factor of {b}.
"], "shuffleChoices": true, "distractors": ["", "", "", "", "", ""], "maxMarks": 0, "displayType": "dropdownlist", "variableReplacementStrategy": "originalfirst", "scripts": {}, "minMarks": 0, "variableReplacements": []}], "showCorrectAnswer": true, "showFeedbackIcon": true, "prompt": "Given $y=\\var{b}^x$, everytime $x$ increases by 1, $y$ [[0]].
", "variableReplacementStrategy": "originalfirst", "marks": 0, "type": "gapfill", "scripts": {}, "variableReplacements": []}, {"type": "1_n_2", "showFeedbackIcon": true, "matrix": ["1", 0], "displayColumns": 0, "marks": 0, "showCorrectAnswer": true, "choices": ["exponential growth
", "exponential decay
"], "shuffleChoices": false, "distractors": ["", ""], "variableReplacements": [], "maxMarks": 0, "displayType": "radiogroup", "variableReplacementStrategy": "originalfirst", "scripts": {}, "minMarks": 0, "prompt": "Would $y=\\var{b}^x$ best be described as exponential decay or exponential growth?
"}, {"type": "1_n_2", "showFeedbackIcon": true, "matrix": ["1", 0, 0, 0], "displayColumns": "2", "marks": 0, "showCorrectAnswer": true, "choices": ["{graph1(1)}
", "{graph1(2)}
", "{graph1(3)}
", "{graph1(4)}
"], "shuffleChoices": true, "distractors": ["", "", "", ""], "variableReplacements": [], "maxMarks": 0, "displayType": "radiogroup", "variableReplacementStrategy": "originalfirst", "scripts": {}, "minMarks": 0, "prompt": "Which graph best represents $y=\\var{b}^x$?
"}], "preamble": {"js": "", "css": ""}, "variable_groups": [], "name": "Jamie's copy of Graphing exponentials of the form y=b^x with b>1", "type": "question", "contributors": [{"name": "Jamie Wood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/79/"}]}]}], "contributors": [{"name": "Jamie Wood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/79/"}]}