// Numbas version: exam_results_page_options {"name": "Series: p series", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "

You are given the series

\n

\\[\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{{num}/({den}*k^{p})}.\\]

", "preamble": {"css": "", "js": ""}, "variables": {"den": {"definition": "random([2,3,5,7,11,13] except [num,-num])", "group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "den"}, "p": {"definition": "random(1,2,3,4,5,6,7,8,1/2,1/3,1/4,1/5,1/6,1/7,1/8)", "group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "p"}, "start": {"definition": "random(list(2..7) except [num,den])", "group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "start"}, "num": {"definition": "random(2,3,5,7,11,13,-2,-3,-5,-7,-11,-13)", "group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "num"}}, "rulesets": {}, "advice": "

The $p$-series $\\sum_{n=1}^\\infty \\frac{1}{n^p}$ is convergent if $p>1$ and divergent if $p\\le 1$.

\n

Our series is $\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{{num}/({den}*k^{p})}$, which looks similar with a $p$-value of $\\var[fractionNumbers]{p}$. In fact:

\n

\\[\\begin{align}\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{{num}/({den}*k^{p})}&=\\simplify[fractionNumbers]{{num}/{den}}\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{1/(k^{p})}\\\\&=\\simplify[fractionNumbers]{{num}/{den}}\\left(-1+\\sum_{k=1}^\\infty \\simplify[fractionNumbers]{1/k^{p}}\\right)\\end{align}\\]

\n

\\[\\begin{align}\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{{num}/({den}*k^{p})}&=\\simplify[fractionNumbers]{{num}/{den}}\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{1/(k^{p})}\\\\&=\\simplify[fractionNumbers]{{num}/{den}}\\left(-1-\\frac{1}{2^\\var[fractionNumbers]{p}}+\\sum_{k=1}^\\infty \\simplify[fractionNumbers]{1/k^{p}}\\right)\\end{align}\\] 

\n

\\[\\begin{align}\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{{num}/({den}*k^{p})}&=\\simplify[fractionNumbers]{{num}/{den}}\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{1/(k^{p})}\\\\&=\\simplify[fractionNumbers]{{num}/{den}}\\left(-1-\\frac{1}{2^\\var[fractionNumbers]{p}}-\\frac{1}{3^\\var[fractionNumbers]{p}}+\\sum_{k=1}^\\infty \\simplify[fractionNumbers]{1/k^{p}}\\right)\\end{align}\\] 

\n

\\[\\begin{align}\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{{num}/({den}*k^{p})}&=\\simplify[fractionNumbers]{{num}/{den}}\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{1/(k^{p})}\\\\&=\\simplify[fractionNumbers]{{num}/{den}}\\left(-1-\\frac{1}{2^\\var[fractionNumbers]{p}}-\\frac{1}{3^\\var[fractionNumbers]{p}}-\\frac{1}{4^\\var[fractionNumbers]{p}}+\\sum_{k=1}^\\infty \\simplify[fractionNumbers]{1/k^{p}}\\right)\\end{align}\\] 

\n

\\[\\begin{align}\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{{num}/({den}*k^{p})}&=\\simplify[fractionNumbers]{{num}/{den}}\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{1/(k^{p})}\\\\&=\\simplify[fractionNumbers]{{num}/{den}}\\left(-1-\\frac{1}{2^\\var[fractionNumbers]{p}}-\\frac{1}{3^\\var[fractionNumbers]{p}}-\\frac{1}{4^\\var[fractionNumbers]{p}}-\\frac{1}{5^\\var[fractionNumbers]{p}}+\\sum_{k=1}^\\infty \\simplify[fractionNumbers]{1/k^{p}}\\right)\\end{align}\\] 

\n

\\[\\begin{align}\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{{num}/({den}*k^{p})}&=\\simplify[fractionNumbers]{{num}/{den}}\\sum_{k=\\var{start}}^\\infty \\simplify[fractionNumbers]{1/(k^{p})}\\\\&=\\simplify[fractionNumbers]{{num}/{den}}\\left(-1-\\frac{1}{2^\\var[fractionNumbers]{p}}-\\frac{1}{3^\\var[fractionNumbers]{p}}-\\frac{1}{4^\\var[fractionNumbers]{p}}-\\frac{1}{5^\\var[fractionNumbers]{p}}-\\frac{1}{6^\\var[fractionNumbers]{p}}+\\sum_{k=1}^\\infty \\simplify[fractionNumbers]{1/k^{p}}\\right)\\end{align}\\] 

\n

and so the convergence/divergence of our series depends on the convergence/divergence of the related $p$-series. Note that adding or subtracting a finite number of terms to a series will not change whether it converges or diverges (such as our missing first term terms), nor will multiplying or dividing the series by a non-zero constant (such as $\\frac{\\var{num}}{\\var{den}}$).

\n

So we have a convergent divergent series that you could say is really a $p$-series with $p=\\var[fractionNumbers]{p}$.

\n

", "functions": {}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "

This question tests to see if students can recognise a $p$-series and based on its $p$-value determine if it is convergent or divergent.

"}, "name": "Series: p series", "extensions": [], "ungrouped_variables": ["p", "num", "den", "start"], "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "tags": [], "parts": [{"scripts": {}, "prompt": "

This is a [[0]] [[1]].

", "gaps": [{"scripts": {}, "showFeedbackIcon": true, "displayType": "dropdownlist", "variableReplacements": [], "type": "1_n_2", "marks": 0, "variableReplacementStrategy": "originalfirst", "maxMarks": 0, "distractors": ["", ""], "choices": ["

convergent

", "

divergent

"], "minMarks": 0, "showCorrectAnswer": true, "matrix": ["if(p>1,1,0)", "if(p<=1,1,0)"], "shuffleChoices": false, "displayColumns": 0}, {"scripts": {}, "showFeedbackIcon": true, "displayType": "dropdownlist", "variableReplacements": [], "type": "1_n_2", "marks": 0, "variableReplacementStrategy": "originalfirst", "maxMarks": 0, "distractors": ["", "", "", "", "", ""], "choices": ["

p series

", "

geometric series

", "

arithmetic series

", "

alternating series

", "

Maclaurin series

", "

Taylor series

"], "minMarks": 0, "showCorrectAnswer": true, "matrix": ["1", 0, 0, "0", 0, 0], "shuffleChoices": true, "displayColumns": 0}], "showCorrectAnswer": true, "variableReplacements": [], "type": "gapfill", "showFeedbackIcon": true, "marks": 0, "variableReplacementStrategy": "originalfirst"}], "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}