// Numbas version: finer_feedback_settings {"name": "Implicit differentiation (1)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": [], "variable_groups": [], "metadata": {"description": "\n \t\t
Implicit differentiation.
\n \t\tGiven $x^2+y^2+ax+by=c$ find $\\displaystyle \\frac{dy}{dx}$ in terms of $x$ and $y$.
\n \t\t\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "rulesets": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "statement": "
Given the following relation between $x$ and $y$
\\[\\simplify[all,!collectNumbers]{x^2+y^2+{a}x+{b}y}=\\var{c}\\]
answer the following question.
On differentiating both sides of the equation implicitly we get
\\[2x + \\simplify[all,!collectNumbers]{2y*Diff(y,x,1) + {a} + {b} *Diff(y,x,1)} = 0\\]
Collecting terms in $\\displaystyle\\frac{dy}{dx}$ and rearranging the equation we get
\\[(\\var{b} + 2y) \\frac{dy}{dx} = \\simplify[all,!collectNumbers]{{ -a} -2x}\\] and hence on further rearranging:
\\[\\frac{dy}{dx} = \\simplify[all,!collectNumbers]{({ - a} - 2 * x) / ({b} + (2 * y))}\\]
Using implicit differentiation find $\\displaystyle \\frac{dy}{dx}$ in terms of $x$ and $y$.
\nInput your answer here:
\n$\\displaystyle \\frac{dy}{dx}= $ [[0]]
\n ", "type": "gapfill", "scripts": {}, "showCorrectAnswer": true, "variableReplacements": [], "gaps": [{"answer": "(({( - a)} + ( - (2 * x))) / ({b} + (2 * y)))", "vsetrange": [0, 1], "marks": 2, "scripts": {}, "checkingaccuracy": 0.001, "variableReplacements": [], "vsetrangepoints": 5, "expectedvariablenames": [], "showCorrectAnswer": true, "type": "jme", "checkvariablenames": false, "variableReplacementStrategy": "originalfirst", "checkingtype": "absdiff", "showFeedbackIcon": true, "showpreview": true, "answersimplification": "all,!collectNumbers"}], "showFeedbackIcon": true}], "preamble": {"css": "", "js": ""}, "type": "question", "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}]}]}], "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}]}