// Numbas version: exam_results_page_options {"name": "Functions of two variables: Stationary points 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "s3", "s2", "s1", "s5", "s4", "r"], "name": "Functions of two variables: Stationary points 3", "tags": ["Calculus", "Differentiation", "Simultaneous equations", "calculus", "differentiate", "differentiation", "functions of two variables", "partial derivative", "partial differentiation", "simultaneous equations", "stationary points"], "preamble": {"css": "", "js": ""}, "advice": "\n

The $(x,y)$ coordinates of the stationary point of a function of 2 variables $f(x,y)$ are given by solving
the following 2 equations for $x$ and $y$

\n

\\[\\begin{eqnarray*} \\partial f \\over \\partial x &=&0\\\\ \\\\ \\partial f \\over \\partial y &=&0 \\end{eqnarray*} \\]

\n

In this case you get two equations to solve for $x$ and $y$

\n

\\[\\begin{eqnarray*} \\simplify[std]{{-2*b}*(x-{c})*e^(-(x-{c})^2-(y-{d})^2)}&=&0\\\\ \\\\ \\simplify[std]{{-2*b}*(y-{d})*e^(-(x-{c})^2-(y-{d})^2)}&=&0 \\end{eqnarray*} \\]
We can cancel off the term $\\simplify[std]{e^(-(x-{c})^2-(y-{d})^2)}$ in both equations as   $\\simplify[std]{e^(-(x-{c})^2-(y-{d})^2)} \\neq 0,\\;\\forall x,\\;y$.  

\n

On solving these we get \\[ x = \\var{c},\\;\\;\\;y=\\var{d}\\]

\n

So the stationary point is $(\\var{c},\\var{d}) \\in D$.

\n

On substituting these values into $f(x,y)$ we get:

\n

\\[f(\\var{c},\\var{d})=\\simplify[std]{{a}+{b}*e^0={a+b}}\\]

\n ", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"stepsPenalty": 0, "prompt": "

$x$–coordinate, $a=$ [[0]]

\n

$y$–coordinate, $b=$ [[1]]

\n

Input the value of $f(x,y)$ at $(a,b)$:

\n

$f(a,b)=$ [[2]]

\n

If you want some help, click on Show steps. You will not lose any marks if you do so.

", "marks": 0, "gaps": [{"allowFractions": false, "marks": 2, "maxValue": "{c}", "minValue": "{c}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 2, "maxValue": "{d}", "minValue": "{d}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "{a+b}", "minValue": "{a+b}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "steps": [{"type": "information", "showCorrectAnswer": true, "scripts": {}, "prompt": "\n \n \n

The $(x,y)$ coordinates of the stationary point of a function of 2 variables $f(x,y)$ are given by solving
the following 2 equations for $x$ and $y$

\n \n \n \n

\\[\\begin{eqnarray*}\n \n \\partial f \\over \\partial x &=&0\\\\\n \n \\\\\n \n \\partial f \\over \\partial y &=&0\n \n \\end{eqnarray*}\n \n \\]

\n \n \n \n

In this case you get two equations to solve for $x$ and $y$

\n \n \n ", "marks": 0}], "type": "gapfill"}], "statement": "

In the following question find the $(x,y)$ coordinates of the single stationary point $(a,b) \\in D$ of the continuous function $f: D \\rightarrow \\mathbb{R}$:

\n

\\[f(x,y) = \\simplify[std]{{a} + {b}*e^(-(x-{c})^2-(y-{d})^2)}\\]

\n

where \\[D = \\{(x,y): \\simplify[std]{(x-{c})^2+(y-{d})^2}\\} \\le \\var{r}\\]

\n

That is, $D$ is a disk of radius $\\simplify[std]{sqrt({r})}$ and centre $(\\var{c},\\var{d})$.

\n

Input both cooordinates as fractions or integers and not decimals.

", "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "s1*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "s3*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "s2*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "s4*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "s2": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}, "s5": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s5", "description": ""}, "s4": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s4", "description": ""}, "r": {"definition": "random(2,3,5,6,7)", "templateType": "anything", "group": "Ungrouped variables", "name": "r", "description": ""}}, "metadata": {"notes": "\n \t\t

10/07/2012:

\n \t\t

Added tags.

\n \t\t

Question appears to be working correctly.

\n \t\t

 

\n \t\t", "description": "

Find the coordinates of the stationary point for $f: D \\rightarrow \\mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}