// Numbas version: finer_feedback_settings {"name": "Solving log equations using exponentials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Solving log equations using exponentials", "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "
Solve the following equation for $x$.
", "advice": "We start solving the equation one operation at a time by doing the inverse to both sides, when we get to undoing the log we recall the definition of $\\log_b$, write the equation in index form and continue solving.
\nRecall: The definition of $\\log_b$ says $\\log_b(a)=c$ is equivalent to $b^c=a$.
\n$\\displaystyle{\\var{d}\\log_\\var{b}(\\simplify{{a}x+{c}})+\\var{f} }$ | \n$=$ | \n$\\var{g}$ | \n\n |
$\\displaystyle{\\var{d}\\log_\\var{b}(\\simplify{{a}x+{c}}) }$ | \n$=$ | \n$\\var{g-f}$ | \n(subtract $\\var{f}$ from both sides) | \n
$\\displaystyle{\\log_\\var{b}(\\simplify{{a}x+{c}}) }$ | \n$=$ | \n$\\var{power}$ | \n(divide both sides by $\\var{d}$) | \n
$\\simplify[basic]{{b}^{power}}$ | \n$=$ | \n$\\simplify{{a}x+{c}}$ | \n(using the definition of $\\log_\\var{b}$) | \n
$\\simplify[basic,unitpower]{{b}^{power}-{c}}$ | \n$=$ | \n$\\var{a}x$ | \n(subtract $\\var{c}$ from both sides) | \n
\n | \n | \n | \n |
$\\displaystyle{\\simplify[basic,fractionnumbers,unitpower]{({b}^{power}-{c})/{a}}}$ | \n$=$ | \n$x$ | \n(divide both sides by $\\var{a}$) | \n
\n | \n | \n | \n |
$x$ | \n$=$ | \n$\\displaystyle{\\simplify[basic,fractionnumbers,unitpower]{{({b}^{power}-{c})/{a}}}}$ | \n\n |
$\\displaystyle{\\var{d}\\log_\\var{b}(\\simplify{{a}x+{c}})+\\var{f}=\\var{g} }.$
\n\n$x=$ [[0]]
\nNote: Please give your answer as a fraction if an exact value cannot be found.
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{({b}^{power}-{c})/{a}}", "answerSimplification": "fractionnumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}, {"name": "Amy Barker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4520/"}]}]}], "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}, {"name": "Amy Barker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4520/"}]}