// Numbas version: finer_feedback_settings {"name": "Sequences and Limits 1.1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["ab", "valexp", "v35", "al", "v15", "v150", "v610", "b1", "ga", "b3", "d2", "d1", "val", "s1", "v110", "v560", "s5", "v650", "k1", "r", "v45", "tol", "v210", "v250", "be", "v25", "v65", "de", "v450", "a3", "c1", "d", "a", "c", "b", "v550", "v350", "v510", "k", "v410", "n", "v55", "v310", "v660"], "name": "Sequences and Limits 1.1", "tags": ["examples of standard limits", "limit", "limits", "limits of sequences", "sequences", "standard limits", "taking the limit"], "preamble": {"css": "", "js": ""}, "advice": "

All calculations below are to $5$ decimal places.

\n

The notation $a \\approx b$ means that $a$ and $b$ are approximately equal.

\n

a)

\n

Using a calculator for $3$ values of $n$:

\n\n \n \n \n \n \n \n \n \n
$n$$\\displaystyle{\\frac{1}{n^{1/\\var{r}}}}$
$100$$\\var{v15}$
$5000$$\\var{v110}$
$5000000$$\\var{v150}$
\n

This indicates that $\\displaystyle{\\lim_{n \\to \\infty}\\left(\\frac{1}{n^{1/\\var{r}}}\\right)=0}$

\n

In fact $\\displaystyle{\\lim_{n \\to \\infty}\\left(\\frac{1}{n^r}\\right)=0}$ for any $r \\gt 0$

\n

b)

\n\n \n \n \n \n \n \n \n \n
$n$$\\displaystyle{\\var{k1}^{1/n}}$
$100$$\\var{v25}$
$5000$$\\var{v210}$
$5000000$$\\var{v250}$
\n

This indicates that $\\displaystyle{\\lim_{n \\to \\infty}\\var{k1}^{1/n}=1}$, see next question as well.

\n

c)

\n\n \n \n \n \n \n \n \n \n
$n$$\\displaystyle{\\var{k}^{1/n}}$
$100$$\\var{v35}$
$5000$$\\var{v310}$
$5000000$$\\var{v350}$
\n

This indicates that $\\displaystyle{\\lim_{n \\to \\infty}\\var{k}^{1/n}=1}$.

\n

From the last two questions it seems that $\\displaystyle{\\lim_{n \\to \\infty} k^{1/n}=1}$ for any $k \\gt 0$ – and this is fact true.

\n

d)

\n\n\n \n \n \n \n \n \n \n
$n$$\\displaystyle{\\frac{\\var{c}n+\\var{d}}{\\var{al}n-\\var{ga}}}$
$100$$\\var{v45}$
$5000$$\\var{v410}$
$5000000$$\\var{v450}$
\n

This indicates that  $\\displaystyle \\lim_{n \\to \\infty}\\left(\\simplify[std]{({c}n+{d})/({al}n-{ga})}\\right)\\;=\\; \\simplify[std]{{c}/{al}}$.

\n

In general
\\[\\lim_{n \\to \\infty}\\left(\\frac{an+b}{cn+d}\\right)= \\frac{a}{c}\\] when $c \\neq 0$

\n

e)

\n\n \n \n \n \n \n \n \n \n \n
$n$$\\displaystyle{\\left(\\simplify{{c}/{n}}\\right)^n}$
$10$$\\var{v55}$
$29$$\\var{v510}$
$50$$\\var{v550}$
$89$$\\var{v560}$
\n

This indicates that $\\displaystyle{\\lim_{n \\to \\infty}\\left(\\simplify{{c}/{n}}\\right)^n}= 0$. In general $\\displaystyle{\\lim_{n \\to \\infty} r^n= 0}$ if $|r| \\lt 1$

\n

f)

\n

We have the limit:
\\[\\lim_{n\\to\\infty}\\left(1+\\frac{a}{n}\\right)=e^a\\]
The following table confirms that the values are converging to (five decimal places) $\\displaystyle{\\simplify[std]{e^({a3}/{b3})={valexp}}}$

\n\n\n \n \n \n \n \n \n \n \n
$n$$\\displaystyle{\\left(\\simplify[std]{1+{a3}/({b3}n)}\\right)^n}$
$10$$\\var{v65}$
$100$$\\var{v610}$
$1000$$\\var{v650}$
$10000$$\\var{v660}$
\n

Hence the answer asked for is $\\var{val}$ to $4$ decimal places.

\n

g)

\n

The answer to this question is based upon neglecting terms in polynomials in $n$ for large $n$.

\n

For example, $n^3+1000000n^2+1000000000 \\approx n^3$ for large $n$ as the $n^3$ term completely dominates the other terms as $n \\longrightarrow \\infty$.

\n

A more precise way of saying this is:
\\[\\lim_{n\\to\\infty}\\left(\\frac{n^3+1000000n^2+1000000000}{n^3}\\right)=1\\]

\n

So for large $n$
\\[\\begin{eqnarray*} \\frac{\\left(\\simplify[std]{{al^d}n^({a*d})+{be}n^{b}+{c}}\\right)^{1/\\var{d}}} {\\left(\\simplify[std]{{ga^d1}n^({a*d1})+{de}n^{b1}+{c1}}\\right)^{1/\\var{d1}}}&\\approx& \\frac{\\left(\\simplify[std]{{al^d}n^({a*d})}\\right)^{1/\\var{d}}} {\\left(\\simplify[std]{{ga^d1}n^({a*d1})}\\right)^{1/\\var{d1}}}\\\\ &=&\\frac{\\simplify[std]{{al^d}^(1/{d})n^{a}}} {\\simplify[std]{{ga^d1}^(1/{d1})n^{a}}}\\\\ &=&\\simplify[std]{{al}/{ga}} \\end{eqnarray*} \\]
Hence the limit is $\\displaystyle{\\simplify[std]{{al}/{ga}}}$

", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "

$\\displaystyle{\\lim_{n \\to \\infty}\\left(\\frac{1}{n^{1/\\var{r}}}\\right)=\\;\\;}$[[0]]

", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "0", "minValue": "0", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\n \n \n

$\\displaystyle{\\lim_{n \\to \\infty}\\left(\\var{k1}^{1/n}\\right)=\\;\\;}$[[0]]

\n \n \n ", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "1", "minValue": "1", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\n \n \n

$\\displaystyle{\\lim_{n \\to \\infty}\\left(\\var{k}^{1/n}\\right)=\\;\\;}$[[0]]

\n \n \n ", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "1", "minValue": "1", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\n

$\\displaystyle \\lim_{n \\to \\infty}\\left(\\simplify[std]{({c}n+{d})/({al}n-{ga})}\\right)\\;=\\;$[[0]]

\n

Enter your answer as a fraction or integer, not as a decimal.

\n ", "marks": 0, "gaps": [{"notallowed": {"message": "

Enter your answer as a fraction or integer, not as a decimal.

", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{c}/{al}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\n \n \n

$\\displaystyle{\\lim_{n \\to \\infty}\\left(\\simplify[std]{{c}/{n}}\\right)^n=\\;\\;}$[[0]]

\n \n \n ", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "0", "minValue": "0", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\n \n \n

$\\displaystyle{\\lim_{n \\to \\infty}\\left(\\simplify[std]{1+{a3}/({b3}n)}\\right)^n=\\;\\;}$[[0]]
Input your answer to 4 decimal places.

\n \n \n ", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "val+tol", "minValue": "val-tol", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\n \n \n

$\\displaystyle{\\lim_{n \\to \\infty}\\frac{\\left(\\simplify[std]{{al^d}n^({a*d})+{be}n^{b}+{c}}\\right)^{1/\\var{d}}}\n \n {\\left(\\simplify[std]{{ga^d1}n^({a*d1})+{de}n^{b1}+{c1}}\\right)^{1/\\var{d1}}}=\\;\\;}$[[0]]

\n \n \n \n

Enter your answer as a fraction or integer, not as a decimal.

\n \n \n ", "marks": 0, "gaps": [{"notallowed": {"message": "

Enter your answer as a fraction or integer, not as a decimal.

", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{al}/{ga}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "

What are the following limits?

", "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"ab": {"definition": "abs(a3)", "templateType": "anything", "group": "Ungrouped variables", "name": "ab", "description": ""}, "valexp": {"definition": "precround(exp(a3/b3),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "valexp", "description": ""}, "v35": {"definition": "precround(k^(1/100),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v35", "description": ""}, "al": {"definition": "random(1..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "al", "description": ""}, "v15": {"definition": "precround(100^(-1/r),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v15", "description": ""}, "v150": {"definition": "precround(5000000^(-1/r),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v150", "description": ""}, "v610": {"definition": "precround((1 + s5 * (abs(a3) / (b3 * 100))) ^ 100,5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v610", "description": ""}, "b1": {"definition": "a*d1-1", "templateType": "anything", "group": "Ungrouped variables", "name": "b1", "description": ""}, "ga": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "ga", "description": ""}, "b3": {"definition": "switch(ab=1,random(2..9),ab=2,random(3,5,7,9),ab=3,random(2,4,5,7,8),random(3,5,7,9))", "templateType": "anything", "group": "Ungrouped variables", "name": "b3", "description": ""}, "d2": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "d2", "description": ""}, "d1": {"definition": "if(d2=d,d+1,d2)", "templateType": "anything", "group": "Ungrouped variables", "name": "d1", "description": ""}, "val": {"definition": "precround(exp(a3/b3),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "val", "description": ""}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}, "v110": {"definition": "precround(5000^(-1/r),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v110", "description": ""}, "v560": {"definition": "precround((c/n)^89,5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v560", "description": ""}, "s5": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s5", "description": ""}, "v650": {"definition": "precround((1 + s5 * (abs(a3) / (b3 * 1000))) ^ 1000,5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v650", "description": ""}, "k1": {"definition": "random(100000..200000)", "templateType": "anything", "group": "Ungrouped variables", "name": "k1", "description": ""}, "v55": {"definition": "precround((c/n)^10,5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v55", "description": ""}, "v45": {"definition": "precround((c * 100 + d) / (al * 100 -ga),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v45", "description": ""}, "tol": {"definition": "0", "templateType": "anything", "group": "Ungrouped variables", "name": "tol", "description": ""}, "v210": {"definition": "precround(k1^(1/5000),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v210", "description": ""}, "v250": {"definition": "precround(k1^(1/5000000),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v250", "description": ""}, "be": {"definition": "random(-5..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "be", "description": ""}, "v25": {"definition": "precround(k1^(1/100),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v25", "description": ""}, "v65": {"definition": "precround((1 + s5 * (abs(a3) / (b3 * 10))) ^ 10,5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v65", "description": ""}, "de": {"definition": "random(-5..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "de", "description": ""}, "v450": {"definition": "precround((c * 5000000 + d) / (al * 5000000 -ga),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v450", "description": ""}, "a3": {"definition": "s5*random(1..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "a3", "description": ""}, "c1": {"definition": "s1*random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c1", "description": ""}, "v350": {"definition": "precround(k^(1/5000000),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v350", "description": ""}, "a": {"definition": "random(2..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "s1*random(11..50)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "a*d-random(1..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "v550": {"definition": "precround((c/n)^50,5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v550", "description": ""}, "d": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "v510": {"definition": "precround((c/n)^29,5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v510", "description": ""}, "k": {"definition": "random(2..20#0.5)", "templateType": "anything", "group": "Ungrouped variables", "name": "k", "description": ""}, "v410": {"definition": "precround((c * 5000 + d) / (al * 5000 -ga),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v410", "description": ""}, "n": {"definition": "abs(c)+random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "n", "description": ""}, "r": {"definition": "random(2..10)", "templateType": "anything", "group": "Ungrouped variables", "name": "r", "description": ""}, "v310": {"definition": "precround(k^(1/5000),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v310", "description": ""}, "v660": {"definition": "precround((1 + s5 * (abs(a3) / (b3 * 10000))) ^ 10000,5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v660", "description": ""}}, "metadata": {"notes": "\n \t\t

4/07/2012:

\n \t\t

Added tags.

\n \t\t

Improved display of prompt for fourth part.

\n \t\t

Improved display of solution to fourth part.

\n \t\t

Checked calculations.

\n \t\t

No tolerance on answer to 6th part, got to be exact to 4dps. Tolerance variable, tol=0.

\n \t\t

21/07/2012:

\n \t\t

Added description.

\n \t\t

27/7/2012:

\n \t\t

Added tags.

\n \t\t

Question appears to be working correctly.

\n \t\t", "description": "

Seven standard elementary limits of sequences. 

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}