// Numbas version: finer_feedback_settings {"name": "Question 2 MATH 6005 Assessment 1 Matrix Multiplication 1 (2x2 matrices)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers"]}, "statement": "
Do the following matrix problems :
Let
\\[A=\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix},\\;\\; B=\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix},\\;\\; \\]
Calculate the following products of these matrices:
Multiplication of $2 \\times 2$ matrices.
"}, "parts": [{"showCorrectAnswer": true, "marks": 0, "gaps": [{"marks": "0.5", "tolerance": 0, "correctAnswerFractions": false, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "showFeedbackIcon": true, "allowResize": false, "scripts": {}, "numColumns": "2", "showCorrectAnswer": true, "type": "matrix", "variableReplacements": [], "numRows": "2", "correctAnswer": "matrix([\n [ab11,ab12],\n [ab21,ab22]\n])", "markPerCell": false}], "type": "gapfill", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "prompt": "$AB = \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix} = $ [[0]]
"}, {"showCorrectAnswer": true, "marks": 0, "gaps": [{"marks": "0.5", "tolerance": 0, "correctAnswerFractions": false, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "showFeedbackIcon": true, "allowResize": false, "scripts": {}, "numColumns": "2", "showCorrectAnswer": true, "type": "matrix", "variableReplacements": [], "numRows": "2", "correctAnswer": "matrix([\n [ba11,ba12],\n [ba21,ba22]\n])", "markPerCell": false}], "type": "gapfill", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "prompt": "$BA = \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}=$ [[0]]
"}], "variable_groups": [], "ungrouped_variables": ["ba21", "a21", "a22", "ba22", "cb21", "b22", "b21", "cb22", "ac22", "ac21", "ab22", "ab21", "b12", "b11", "c12", "c11", "c22", "a11", "cb11", "cb12", "a12", "c21", "ba11", "ba12", "ab12", "ab11", "ac12", "ac11"], "name": "Question 2 MATH 6005 Assessment 1 Matrix Multiplication 1 (2x2 matrices)", "extensions": [], "functions": {}, "variables": {"a11": {"group": "Ungrouped variables", "templateType": "anything", "name": "a11", "description": "", "definition": "random(-2,1,2)"}, "ab11": {"group": "Ungrouped variables", "templateType": "anything", "name": "ab11", "description": "", "definition": "a11*b11+a12*b21"}, "b12": {"group": "Ungrouped variables", "templateType": "anything", "name": "b12", "description": "", "definition": "random(-3..1)"}, "cb11": {"group": "Ungrouped variables", "templateType": "anything", "name": "cb11", "description": "", "definition": "c11*b11+c12*b21"}, "cb22": {"group": "Ungrouped variables", "templateType": "anything", "name": "cb22", "description": "", "definition": "c21*b12+c22*b22"}, "ac22": {"group": "Ungrouped variables", "templateType": "anything", "name": "ac22", "description": "", "definition": "a21*c12+a22*c22"}, "c22": {"group": "Ungrouped variables", "templateType": "anything", "name": "c22", "description": "", "definition": "random(0,1)"}, "ba22": {"group": "Ungrouped variables", "templateType": "anything", "name": "ba22", "description": "", "definition": "b21*a12+b22*a22"}, "ac12": {"group": "Ungrouped variables", "templateType": "anything", "name": "ac12", "description": "", "definition": "a11*c12+a12*c22"}, "a12": {"group": "Ungrouped variables", "templateType": "anything", "name": "a12", "description": "", "definition": "random(1..4)"}, "ab12": {"group": "Ungrouped variables", "templateType": "anything", "name": "ab12", "description": "", "definition": "a11*b12+a12*b22"}, "b11": {"group": "Ungrouped variables", "templateType": "anything", "name": "b11", "description": "", "definition": "random(-3,-1,0,3)"}, "ac11": {"group": "Ungrouped variables", "templateType": "anything", "name": "ac11", "description": "", "definition": "a11*c11+a12*c21"}, "b21": {"group": "Ungrouped variables", "templateType": "anything", "name": "b21", "description": "", "definition": "random(2,3)"}, "c21": {"group": "Ungrouped variables", "templateType": "anything", "name": "c21", "description": "", "definition": "random(2..5)"}, "ab22": {"group": "Ungrouped variables", "templateType": "anything", "name": "ab22", "description": "", "definition": "a21*b12+a22*b22"}, "b22": {"group": "Ungrouped variables", "templateType": "anything", "name": "b22", "description": "", "definition": "random(-3..-1)"}, "a22": {"group": "Ungrouped variables", "templateType": "anything", "name": "a22", "description": "", "definition": "random(1..3)"}, "ba11": {"group": "Ungrouped variables", "templateType": "anything", "name": "ba11", "description": "", "definition": "b11*a11+b12*a21"}, "ba21": {"group": "Ungrouped variables", "templateType": "anything", "name": "ba21", "description": "", "definition": "b21*a11+b22*a21"}, "ac21": {"group": "Ungrouped variables", "templateType": "anything", "name": "ac21", "description": "", "definition": "a21*c11+a22*c21"}, "a21": {"group": "Ungrouped variables", "templateType": "anything", "name": "a21", "description": "", "definition": "random(-2..2)"}, "cb21": {"group": "Ungrouped variables", "templateType": "anything", "name": "cb21", "description": "", "definition": "c21*b11+c22*b21"}, "c11": {"group": "Ungrouped variables", "templateType": "anything", "name": "c11", "description": "", "definition": "random(1,0,4)"}, "c12": {"group": "Ungrouped variables", "templateType": "anything", "name": "c12", "description": "", "definition": "a12+b12"}, "cb12": {"group": "Ungrouped variables", "templateType": "anything", "name": "cb12", "description": "", "definition": "c11*b12+c12*b22"}, "ba12": {"group": "Ungrouped variables", "templateType": "anything", "name": "ba12", "description": "", "definition": "b11*a12+b12*a22"}, "ab21": {"group": "Ungrouped variables", "templateType": "anything", "name": "ab21", "description": "", "definition": "a21*b11+a22*b21"}}, "preamble": {"css": "", "js": ""}, "tags": [], "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\\[ \\begin{eqnarray*} AB &=& \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{a11}{b11}+{a12}{b21}}&\\simplify[]{{a11}{b12}+{a12}{b22}}\\\\ \\simplify[]{{a21}{b11}+{a22}{b21}}&\\simplify[]{{a21}{b12}+{a22}{b22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ab11}&\\var{ab12}\\\\ \\var{ab21}&\\var{ab22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]
\n\\[ \\begin{eqnarray*} BA &=& \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{b11}{a11}+{b12}{a21}}&\\simplify[]{{b11}{a12}+{b12}{a22}}\\\\ \\simplify[]{{b21}{a11}+{b22}{a21}}&\\simplify[]{{b21}{a12}+{b22}{a22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ba11}&\\var{ba12}\\\\ \\var{ba21}&\\var{ba22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]
\n\\[ \\begin{eqnarray*} CB &=& \\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{c11}{b11}+{c12}{b21}}&\\simplify[]{{c11}{b12}+{c12}{b22}}\\\\ \\simplify[]{{c21}{b11}+{c22}{b21}}&\\simplify[]{{c21}{b12}+{a22}{b22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{cb11}&\\var{cb12}\\\\ \\var{cb21}&\\var{cb22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]
\n\\[ \\begin{eqnarray*} AC &=& \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{a11}{c11}+{a12}{c21}}&\\simplify[]{{a11}{c12}+{a12}{c22}}\\\\ \\simplify[]{{a21}{c11}+{a22}{c21}}&\\simplify[]{{a21}{c12}+{a22}{c22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ac11}&\\var{ac12}\\\\ \\var{ac21}&\\var{ac22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]
", "type": "question", "contributors": [{"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}]}]}], "contributors": [{"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}]}