// Numbas version: exam_results_page_options {"name": "Solving linear inequalities", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"a": {"templateType": "anything", "definition": "repeat(random(2..10),10)", "group": "Ungrouped variables", "description": "", "name": "a"}, "b": {"templateType": "anything", "definition": "repeat(random(11..20),10)", "group": "Ungrouped variables", "description": "", "name": "b"}, "c": {"templateType": "anything", "definition": "random(2,3,6)", "group": "Ungrouped variables", "description": "", "name": "c"}}, "advice": "

As with regular linear equations, we aim to isolate the variable by subtracting any constants when dividing by the $x$ coefficient. The only major difference is that when we divide or multiply by a negative number, the inequality sign is reversed.

\n

For example, the following inequality is true:

\n

\$-3 \\lt -2 \$

\n

When we multiply both sides by $-2$, the inequality sign must reverse:

\n

\$6 \\gt 4 \$

\n

#### a)

\n

To put $x$ on its own, we need to add $\\var{a[0]}$ to both sides of the inequality.

\n

\\begin{align}
\\simplify{x-{a[0]}}&<\\var{a[1]}\\\\[1em]
\\var{x}&<\\simplify[]{{a[1]}+{a[0]}}\\\\[1em]
x&<\\simplify{({a[1]}+{a[0]})}\\text{.}
\\end{align}

\n

#### b)

\n

In this example we find $x$ by dividing both sides by the coefficient of $x$, $\\var{a[2]}$.

\n

\\begin{align}
\\simplify{{a[2]}}x&<\\var{a[3]}\\\\[1em]
x&<\\simplify{{a[3]}/{a[2]}}\\text{.}
\\end{align}

\n

#### c)

\n

\\begin{align}
\\simplify{{a[6]}x-{a[4]}}&<\\var{a[5]}\\\\[1em]
\\var{a[6]}x&<\\var{a[5]}+\\var{a[4]} & \\text{Add } 8 \\text{ to get } x \\text{ on its own.}\\\\[1em]
x&<\\simplify[]{({a[5]}+{a[4]})/{a[6]}} & \\text{ Divide by } \\var{a[6]} \\text{.} \\\\[1em]
x&<\\simplify{({a[5]}+{a[4]})/{a[6]}}\\text{.}
\\end{align}

\n

#### d)

\n

In this example, take the constants to one side, and keep the $x$ term on the other. Divide through by the negative $x$-coefficient to find an inequality for $x$. Notice that where you divide (or multiply) an equality by a negative value, the inequality sign is reversed.

\n

\\begin{align}
\\simplify{{-a[6]}x - {a[4]}} &< \\var{a[5]} \\\\[1em]
\\var{-a[6]}x &< \\var{a[5]} + \\var{a[4]} & \\text{Add } \\var{a[4]} \\text{ to both sides.} \\\\[1em]
x &> \\simplify[]{({a[5]}+{a[4]})/-{a[6]}} \\text{ Divide by } \\var{-a[6]} \\text{. The inequality is reversed.} \\\\[1em]
x &> \\simplify{({a[5]}+{a[4]})/-{a[6]}}\\text{.}\\\\
\\end{align}

\n

#### e)

\n

In this example, separate the constants and the $x$-term, then divide by the $x$-coefficient to find an inequality for $x$.

\n

\\begin{align}
\\simplify{{b[0]}x-{b[1]}}&<\\simplify{{b[3]}-{b[2]}x}\\\\[1em]
\\simplify{({b[0]}+{b[2]})x}&<\\simplify{{b[3]}+{b[1]}}\\\\[1em]
x&<\\simplify{({b[3]}+{b[1]})/({b[0]}+{b[2]})}\\text{.}\\\\[1em]
\\end{align}

\n

#### f)

\n

In this example, separate the $x$-term from all other terms and remember to reverse the inequality when dividing by $\\simplify{{a[7]}-{b[4]}}$.

\n

\\begin{align}
\\simplify{-{b[4]}x+{a[8]}a}&>\\simplify{{b[5]}+b-{a[7]}x}\\\\[1em]
\\simplify{{a[7]}-{b[4]}}x&>\\simplify{{b[5]}+b-{a[8]}a}\\\\[1em]
x&<\\simplify{(-{b[5]}-b+{a[8]}a)/({b[4]}-{a[7]})}\\text{.}\\\\[1em]
\\end{align}

\n

g)

\n

In this example, a simple way to solve for $x$ is to divide by $-\\var{c}$ before rearranging the rest of the equation by subtracting $g$ from both sides.

\n

\\begin{align}
\\simplify{-{c}(x+g)}&>\\simplify{6h-{c}{a[0]}}\\\\[1em]
\\simplify{(x+g)}&<\\simplify[]{6h/-{c}+{a[0]}}\\\\[1em]
x&<\\simplify[]{6h/-{c}+{a[0]}-g}\\\\[1em]
x&<\\simplify{{a[0]}-6h/{c}-g}\\text{.}
\\end{align}

", "functions": {}, "variable_groups": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

In parts (a) and (b) rearrange linear inequalities to make $x$ the subject.

\n

In the parts (c) and (d) correctly give the direction of the inequality sign after rearranging an inequality.

"}, "extensions": [], "variablesTest": {"condition": "", "maxRuns": 100}, "parts": [{"sortAnswers": false, "customMarkingAlgorithm": "", "type": "gapfill", "marks": 0, "extendBaseMarkingAlgorithm": true, "gaps": [{"customMarkingAlgorithm": "", "type": "jme", "marks": 1, "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "showCorrectAnswer": true, "variableReplacements": [], "unitTests": [], "showPreview": true, "checkVariableNames": false, "scripts": {}, "expectedVariableNames": [], "checkingType": "absdiff", "checkingAccuracy": 0.001, "answerSimplification": "all", "variableReplacementStrategy": "originalfirst", "failureRate": 1, "answer": "{a[3]}/{a[2]}", "showFeedbackIcon": true, "vsetRangePoints": 5}], "showCorrectAnswer": true, "variableReplacements": [], "unitTests": [], "scripts": {}, "prompt": "

$\\simplify{{a[2]}x<{a[3]}}$

\n

$x<$ [[0]]

", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true}, {"sortAnswers": false, "customMarkingAlgorithm": "", "type": "gapfill", "marks": 0, "extendBaseMarkingAlgorithm": true, "gaps": [{"customMarkingAlgorithm": "", "type": "jme", "marks": 1, "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "showCorrectAnswer": true, "variableReplacements": [], "unitTests": [], "showPreview": true, "checkVariableNames": false, "scripts": {}, "expectedVariableNames": [], "checkingType": "absdiff", "checkingAccuracy": 0.001, "answerSimplification": "all", "variableReplacementStrategy": "originalfirst", "failureRate": 1, "answer": "({b[3]}+{b[1]})/({b[0]}+{b[2]})", "showFeedbackIcon": true, "vsetRangePoints": 5}, {"shuffleChoices": false, "customMarkingAlgorithm": "", "type": "1_n_2", "marks": 0, "extendBaseMarkingAlgorithm": true, "distractors": ["", ""], "showCorrectAnswer": true, "variableReplacements": [], "displayColumns": 0, "unitTests": [], "maxMarks": 0, "scripts": {}, "matrix": [0, "1"], "minMarks": 0, "variableReplacementStrategy": "originalfirst", "displayType": "dropdownlist", "choices": ["

>

", "

<

"], "showFeedbackIcon": true}], "showCorrectAnswer": true, "variableReplacements": [], "unitTests": [], "scripts": {}, "prompt": "

$\\simplify{{b[0]}x-{b[1]}<{b[3]}-{b[2]}x}$

\n

$x$  [[1]]  [[0]]

", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true}], "name": "Solving linear inequalities", "ungrouped_variables": ["a", "b", "c"], "preamble": {"css": "", "js": ""}, "statement": "

Solve the following linear inequalities by finding the set of possible values for $x$. State your answers as fractions where applicable.

", "rulesets": {}, "tags": [], "type": "question", "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}]}]}], "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}]}