// Numbas version: finer_feedback_settings {"name": "Ben's copy of Find limits of sequences", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"v250": {"name": "v250", "definition": "precround(k1^(1/5000000),5)", "templateType": "anything", "group": "Part b", "description": ""}, "s1": {"name": "s1", "definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "v610": {"name": "v610", "definition": "precround((1 + s5 * (abs(a3) / (b3 * 100))) ^ 100,5)", "templateType": "anything", "group": "Part f", "description": ""}, "v450": {"name": "v450", "definition": "precround((c * 5000000 + d) / (al * 5000000 -ga),5)", "templateType": "anything", "group": "Part d", "description": ""}, "v15": {"name": "v15", "definition": "precround(100^(-1/r),5)", "templateType": "anything", "group": "Part a", "description": ""}, "k1": {"name": "k1", "definition": "random(100000..200000)", "templateType": "anything", "group": "Part b", "description": ""}, "v25": {"name": "v25", "definition": "precround(k1^(1/100),5)", "templateType": "anything", "group": "Part b", "description": ""}, "v310": {"name": "v310", "definition": "precround(k^(1/5000),5)", "templateType": "anything", "group": "Part c", "description": ""}, "tol": {"name": "tol", "definition": "0", "templateType": "anything", "group": "Part f", "description": ""}, "v660": {"name": "v660", "definition": "precround((1 + s5 * (abs(a3) / (b3 * 10000))) ^ 10000,5)", "templateType": "anything", "group": "Part f", "description": ""}, "v55": {"name": "v55", "definition": "precround((c/n)^10,5)", "templateType": "anything", "group": "Part e", "description": ""}, "v210": {"name": "v210", "definition": "precround(k1^(1/5000),5)", "templateType": "anything", "group": "Part b", "description": ""}, "val": {"name": "val", "definition": "precround(exp(a3/b3),4)", "templateType": "anything", "group": "Part f", "description": ""}, "v45": {"name": "v45", "definition": "precround((c * 100 + d) / (al * 100 -ga),5)", "templateType": "anything", "group": "Part d", "description": ""}, "v150": {"name": "v150", "definition": "precround(5000000^(-1/r),5)", "templateType": "anything", "group": "Part a", "description": ""}, "b1": {"name": "b1", "definition": "a*d1-1", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "b3": {"name": "b3", "definition": "switch(ab=1,random(2..9),ab=2,random(3,5,7,9),ab=3,random(2,4,5,7,8),random(3,5,7,9))", "templateType": "anything", "group": "Part f", "description": ""}, "be": {"name": "be", "definition": "random(-5..5)", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "v110": {"name": "v110", "definition": "precround(5000^(-1/r),5)", "templateType": "anything", "group": "Part a", "description": ""}, "r": {"name": "r", "definition": "random(2..10)", "templateType": "anything", "group": "Part a", "description": ""}, "de": {"name": "de", "definition": "random(-5..5)", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "v35": {"name": "v35", "definition": "precround(k^(1/100),5)", "templateType": "anything", "group": "Part c", "description": ""}, "a3": {"name": "a3", "definition": "s5*random(1..4)", "templateType": "anything", "group": "Part f", "description": ""}, "d2": {"name": "d2", "definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "a": {"name": "a", "definition": "random(2..4)", "templateType": "anything", "group": "Part g", "description": ""}, "c": {"name": "c", "definition": "s1*random(11..50)", "templateType": "anything", "group": "Part d", "description": ""}, "s5": {"name": "s5", "definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "c1": {"name": "c1", "definition": "s1*random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "v650": {"name": "v650", "definition": "precround((1 + s5 * (abs(a3) / (b3 * 1000))) ^ 1000,5)", "templateType": "anything", "group": "Part f", "description": ""}, "al": {"name": "al", "definition": "random(1..4)", "templateType": "anything", "group": "Part d", "description": ""}, "v410": {"name": "v410", "definition": "precround((c * 5000 + d) / (al * 5000 -ga),5)", "templateType": "anything", "group": "Part d", "description": ""}, "n": {"name": "n", "definition": "abs(c)+random(2..5)", "templateType": "anything", "group": "Part e", "description": ""}, "ab": {"name": "ab", "definition": "abs(a3)", "templateType": "anything", "group": "Part f", "description": ""}, "k": {"name": "k", "definition": "random(2..20#0.5)", "templateType": "anything", "group": "Part c", "description": ""}, "ga": {"name": "ga", "definition": "random(2..5)", "templateType": "anything", "group": "Part d", "description": ""}, "valexp": {"name": "valexp", "definition": "precround(exp(a3/b3),5)", "templateType": "anything", "group": "Part f", "description": ""}, "v510": {"name": "v510", "definition": "precround((c/n)^29,5)", "templateType": "anything", "group": "Part e", "description": ""}, "v65": {"name": "v65", "definition": "precround((1 + s5 * (abs(a3) / (b3 * 10))) ^ 10,5)", "templateType": "anything", "group": "Part f", "description": ""}, "v560": {"name": "v560", "definition": "precround((c/n)^89,5)", "templateType": "anything", "group": "Part e", "description": ""}, "v550": {"name": "v550", "definition": "precround((c/n)^50,5)", "templateType": "anything", "group": "Part e", "description": ""}, "d1": {"name": "d1", "definition": "if(d2=d,d+1,d2)", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "d": {"name": "d", "definition": "random(2..5)", "templateType": "anything", "group": "Part d", "description": ""}, "v350": {"name": "v350", "definition": "precround(k^(1/5000000),5)", "templateType": "anything", "group": "Part c", "description": ""}, "b": {"name": "b", "definition": "a*d-random(1..3)", "templateType": "anything", "group": "Part g", "description": ""}}, "question_groups": [{"name": "", "pickQuestions": 0, "pickingStrategy": "all-ordered", "questions": []}], "name": "Ben's copy of Find limits of sequences", "variablesTest": {"maxRuns": 100, "condition": ""}, "showQuestionGroupNames": false, "preamble": {"js": "", "css": ""}, "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "

$\\displaystyle{\\lim_{n \\to \\infty}\\left(\\frac{1}{n^{1/\\var{r}}}\\right)=} $ [[0]]

", "marks": 0, "showCorrectAnswer": true, "type": "gapfill", "scripts": {}, "gaps": [{"maxValue": "0", "showPrecisionHint": false, "minValue": "0", "type": "numberentry", "scripts": {}, "showCorrectAnswer": true, "allowFractions": false, "marks": 1, "correctAnswerFraction": false}]}, {"prompt": "

$\\displaystyle{\\lim_{n \\to \\infty}\\left(\\var{k1}^{1/n}\\right)=} $ [[0]]

", "marks": 0, "showCorrectAnswer": true, "type": "gapfill", "scripts": {}, "gaps": [{"maxValue": "1", "showPrecisionHint": false, "minValue": "1", "type": "numberentry", "scripts": {}, "showCorrectAnswer": true, "allowFractions": false, "marks": 1, "correctAnswerFraction": false}]}, {"prompt": "

$\\displaystyle{\\lim_{n \\to \\infty}\\left(\\var{k}^{1/n}\\right)=} $ [[0]]

", "marks": 0, "showCorrectAnswer": true, "type": "gapfill", "scripts": {}, "gaps": [{"maxValue": "1", "showPrecisionHint": false, "minValue": "1", "type": "numberentry", "scripts": {}, "showCorrectAnswer": true, "allowFractions": false, "marks": 1, "correctAnswerFraction": false}]}, {"prompt": "

$\\displaystyle \\lim_{n \\to \\infty}\\left(\\simplify[std]{({c}n+{d})/({al}n-{ga})}\\right) = $ [[0]]

\n

Enter your answer as a fraction or integer, not as a decimal.

", "marks": 0, "showCorrectAnswer": true, "type": "gapfill", "scripts": {}, "gaps": [{"maxValue": "c/al", "showPrecisionHint": false, "minValue": "c/al", "type": "numberentry", "scripts": {}, "showCorrectAnswer": true, "allowFractions": true, "marks": 1, "correctAnswerFraction": true}]}, {"prompt": "

$\\displaystyle{\\lim_{n \\to \\infty}\\left(\\simplify[std]{{c}/{n}}\\right)^n=} $ [[0]]

", "marks": 0, "showCorrectAnswer": true, "type": "gapfill", "scripts": {}, "gaps": [{"maxValue": "0", "showPrecisionHint": false, "minValue": "0", "type": "numberentry", "scripts": {}, "showCorrectAnswer": true, "allowFractions": false, "marks": 1, "correctAnswerFraction": false}]}, {"prompt": "

$\\displaystyle{\\lim_{n \\to \\infty}\\left(\\simplify[std]{1+{a3}/({b3}n)}\\right)^n=} $ [[0]]

", "marks": 0, "showCorrectAnswer": true, "type": "gapfill", "scripts": {}, "gaps": [{"showpreview": true, "expectedvariablenames": [], "marks": 1, "checkingaccuracy": "0.0001", "scripts": {}, "vsetrangepoints": 5, "vsetrange": [0, 1], "checkingtype": "absdiff", "checkvariablenames": false, "showCorrectAnswer": true, "type": "jme", "answer": "e^({a3}/{b3})"}]}, {"prompt": "

$\\displaystyle{\\lim_{n \\to \\infty}\\frac{\\left(\\simplify[std]{{al^d}n^({a*d})+{be}n^{b}+{c}}\\right)^{1/\\var{d}}} {\\left(\\simplify[std]{{ga^d1}n^({a*d1})+{de}n^{b1}+{c1}}\\right)^{1/\\var{d1}}}=} $ [[0]]

\n

Enter your answer as a fraction or integer, not as a decimal.

", "marks": 0, "showCorrectAnswer": true, "type": "gapfill", "scripts": {}, "gaps": [{"maxValue": "al/ga", "showPrecisionHint": false, "minValue": "al/ga", "type": "numberentry", "scripts": {}, "showCorrectAnswer": true, "allowFractions": true, "marks": 1, "correctAnswerFraction": true}]}], "ungrouped_variables": ["b1", "be", "c1", "d1", "d2", "de", "s1", "s5"], "metadata": {"notes": "\n\t\t

4/07/2012:

\n\t\t

Added tags.

\n\t\t

Improved display of prompt for fourth part.

\n\t\t

Improved display of solution to fourth part.

\n\t\t

Checked calculations.

\n\t\t

No tolerance on answer to 6th part, got to be exact to 4dps. Tolerance variable, tol=0.

\n\t\t

21/07/2012:

\n\t\t

Added description.

\n\t\t

27/7/2012:

\n\t\t

Added tags.

\n\t\t

Question appears to be working correctly.

\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Seven standard elementary limits of sequences. 

"}, "variable_groups": [{"variables": ["r", "v15", "v110", "v150"], "name": "Part a"}, {"variables": ["k1", "v25", "v210", "v250"], "name": "Part b"}, {"variables": ["k", "v35", "v310", "v350"], "name": "Part c"}, {"variables": ["c", "d", "al", "ga", "v45", "v410", "v450"], "name": "Part d"}, {"variables": ["n", "v55", "v510", "v550", "v560"], "name": "Part e"}, {"variables": ["a3", "ab", "b3", "v65", "v610", "v650", "v660", "val", "tol", "valexp"], "name": "Part f"}, {"variables": ["a", "b"], "name": "Part g"}], "type": "question", "statement": "

What are the following limits?

", "functions": {}, "tags": ["checked2015", "examples of standard limits", "limit", "limits", "limits of sequences", "MAS1601", "sequences", "standard limits", "taking the limit"], "advice": "

All calculations below are rounded to $5$ decimal places.

\n

The notation $a \\approx b$ means that $a$ and $b$ are approximately equal.

\n

a)

\n

Using a calculator for $3$ values of $n$:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$n$$\\displaystyle{\\frac{1}{n^{1/\\var{r}}}}$
$100$$\\var{v15}$
$5000$$\\var{v110}$
$5000000$$\\var{v150}$
\n

This indicates that $\\displaystyle{\\lim_{n \\to \\infty}\\left(\\frac{1}{n^{1/\\var{r}}}\\right)=0}$

\n

In fact $\\displaystyle{\\lim_{n \\to \\infty}\\left(\\frac{1}{n^r}\\right)=0}$ for any $r \\gt 0$

\n

b)

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$n$$\\displaystyle{\\var{k1}^{1/n}}$
$100$$\\var{v25}$
$5000$$\\var{v210}$
$5000000$$\\var{v250}$
\n

This indicates that $\\displaystyle{\\lim_{n \\to \\infty}\\var{k1}^{1/n}=1}$.

\n

c)

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$n$$\\displaystyle{\\var{k}^{1/n}}$
$100$$\\var{v35}$
$5000$$\\var{v310}$
$5000000$$\\var{v350}$
\n

This indicates that $\\displaystyle{\\lim_{n \\to \\infty}\\var{k}^{1/n}=1}$.

\n

From the last two questions it seems that $\\displaystyle{\\lim_{n \\to \\infty} k^{1/n}=1}$ for any $k \\gt 0$ – and this is in fact true.

\n

d)

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$n$$\\displaystyle{\\frac{\\var{c}n+\\var{d}}{\\var{al}n-\\var{ga}}}$
$100$$\\var{v45}$
$5000$$\\var{v410}$
$5000000$$\\var{v450}$
\n

This indicates that $\\displaystyle \\lim_{n \\to \\infty}\\left(\\simplify[std]{({c}n+{d})/({al}n-{ga})}\\right) = \\simplify[std]{{c}/{al}}$.

\n

In general, $\\displaystyle{ \\lim_{n \\to \\infty}\\left(\\frac{an+b}{cn+d}\\right)= \\frac{a}{c} }$ when $c \\neq 0$.

\n

e)

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$n$$\\displaystyle{\\left(\\simplify{{c}/{n}}\\right)^n}$
$10$$\\var{v55}$
$29$$\\var{v510}$
$50$$\\var{v550}$
$89$$\\var{v560}$
\n

This indicates that $\\displaystyle{\\lim_{n \\to \\infty}\\left(\\simplify{{c}/{n}}\\right)^n}= 0$.

\n

In general $\\displaystyle{\\lim_{n \\to \\infty} r^n= 0}$ if $|r| \\lt 1$.

\n

f)

\n

We have the limit:

\n

\\[ \\lim_{n\\to\\infty}\\left(1+\\frac{a}{n}\\right) = e^a \\]

\n

The following table confirms that the values are converging to $\\displaystyle{\\simplify[std]{e^({a3}/{b3})={valexp}}}$ (to five decimal places).

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$n$$\\displaystyle{\\left(\\simplify[std]{1+{a3}/({b3}n)}\\right)^n}$
$10$$\\var{v65}$
$100$$\\var{v610}$
$1000$$\\var{v650}$
$10000$$\\var{v660}$
\n

Hence the answer asked for is $\\var{val}$ to $4$ decimal places.

\n

g)

\n

The answer to this question is based upon neglecting terms in polynomials in $n$ for large $n$.

\n

For example, $n^3+1000000n^2+1000000000 \\approx n^3$ for large $n$ because the $n^3$ term completely dominates the other terms as $n \\to \\infty$.

\n

A more precise way of saying this is:

\n

\\[\\lim_{n\\to\\infty}\\left(\\frac{n^3+1000000n^2+1000000000}{n^3}\\right)=1\\]

\n

So for large $n$,

\n

\\begin{align}
\\frac{\\left(\\simplify[std]{{al^d}n^({a*d})+{be}n^{b}+{c}}\\right)^{1/\\var{d}}} {\\left(\\simplify[std]{{ga^d1}n^({a*d1})+{de}n^{b1}+{c1}}\\right)^{1/\\var{d1}}} &\\approx \\frac{\\left(\\simplify[std]{{al^d}n^({a*d})}\\right)^{1/\\var{d}}} {\\left(\\simplify[std]{{ga^d1}n^({a*d1})}\\right)^{1/\\var{d1}}} \\\\ \\\\
&= \\frac{\\simplify[std]{{al^d}^(1/{d})n^{a}}} {\\simplify[std]{{ga^d1}^(1/{d1})n^{a}}} \\\\ \\\\
&= \\simplify[std]{{al}/{ga}}
\\end{align}

\n

Hence the limit is $\\displaystyle{\\simplify[std]{{al}/{ga}}}$

", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}