// Numbas version: finer_feedback_settings {"name": "Thin-walled pressure vessel", "extensions": [], "custom_part_types": [], "resources": [["question-resources/ThinWalledCylinder-2.png", "/srv/numbas/media/question-resources/ThinWalledCylinder-2.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Thin-walled pressure vessel", "tags": [], "metadata": {"description": "
Determine maximum pressure in a closed thin-walled cylindrical pressure vessel before yield.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "A closed, cylindrical, thin-walled pressure vessel can be considered as a biaxial stress case with the hoop stress and axial stress as principal stresses.
", "advice": "A closed, cylindrical, thin-walled pressure vessel has diameter $D = \\var{diameter}$ m and wall thickness $t = \\var{thickness}$ mm.
\nUsing $\\sigma_h = {p D \\over 2 t}$ and $\\sigma_a = {p D \\over 4 t}$, the von Mises stress is given by:
\n$\\sigma_V^2 = \\sigma_a^2 - \\sigma_a \\sigma_h + \\sigma_h^2 = \\left({p D \\over 4 t}\\right)^2 - \\left({p D \\over 4 t}\\right)\\left({p D \\over 2 t}\\right) +\\left({p D \\over 2 t}\\right)^2 = 3\\left({p D \\over 4 t}\\right)^2$
\ni.e.:
\n$\\sigma_V = \\sqrt{3}\\left({p D \\over 4 t}\\right)$
\nwhich can be rearranged to give pressure:
\n$p = \\sigma_V {4 t \\over D \\sqrt{3}} = \\sigma_V {4 \\times \\var{thickness} \\times 10^{-3} \\over \\var{diameter} \\times \\sqrt{3}} = \\var{siground(factor,3)}\\sigma_V$
\nwhere $\\sigma_a$ is the axial stress and $\\sigma_h$ is the hoop stress.
\nThe maximum pressure (such that $\\sigma_V < \\sigma_Y$) for:
\nYield stress of steel.
", "templateType": "anything", "can_override": false}, "thickness": {"name": "thickness", "group": "Ungrouped variables", "definition": "random(0.5..10#0.1)", "description": "Wall thickness of thin-walled pressure vessel.
", "templateType": "anything", "can_override": false}, "sYAl": {"name": "sYAl", "group": "Ungrouped variables", "definition": "random(200..280#10)", "description": "Yield stress of aluminium.
", "templateType": "anything", "can_override": false}, "diameter": {"name": "diameter", "group": "Ungrouped variables", "definition": "random(0.9..2.2#0.1)", "description": "Diameter of thin-walled pressure vessel.
", "templateType": "anything", "can_override": false}, "factor": {"name": "factor", "group": "Ungrouped variables", "definition": "(4*(thickness/1000))/(sqrt(3)*diameter)", "description": "pressure / yield stress
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["diameter", "thickness", "sYFe", "sYAl", "factor"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\nA closed, cylindrical, thin-walled pressure vessel has diameter $D = \\var{diameter}$ m and wall thickness $t = \\var{thickness}$ mm. The von Mises stress is given by:
\n$\\sigma_V^2 = \\sigma_a^2 - \\sigma_a \\sigma_h + \\sigma_h^2$
\nwhere $\\sigma_a$ is the axial stress and $\\sigma_h$ is the hoop stress.
\nWhat is the maximum pressure (such that $\\sigma_V < \\sigma_Y$) for:
\n