// Numbas version: finer_feedback_settings {"name": "Complex numbers Ex Sheet 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Complex numbers Ex Sheet 4", "preamble": {"css": "", "js": ""}, "parts": [{"gaps": [{"expectedvariablenames": [], "vsetrange": [0, 1], "checkvariablenames": false, "showFeedbackIcon": true, "answersimplification": "std", "checkingaccuracy": 0.001, "variableReplacementStrategy": "originalfirst", "checkingtype": "absdiff", "notallowed": {"partialCredit": 0, "message": "
Make sure that you input the real and imaginary parts as fractions and not as decimals
", "showStrings": false, "strings": ["."]}, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "vsetrangepoints": 5, "answer": "{round((z1*conj(z1))^c1)}", "showpreview": true, "variableReplacements": [], "type": "jme"}], "scripts": {}, "marks": 0, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "showFeedbackIcon": true, "prompt": "\\[z=(\\var{z1})^{\\var{c1}}(\\var{conj(z1)})^{\\var{c1}}\\]
$z=\\;\\;$[[0]]
\\[z=(\\var{z2})^4\\]
$z=\\;\\;$[[0]]
Make sure that you input the real and imaginary parts as fractions and not as decimals
", "showStrings": false, "strings": ["."]}, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "vsetrangepoints": 5, "answer": "{re(conj(z3^d1))}/{abs(z3^(2*d1))}+({im(conj(z3^d1))}/{round(abs(z3)^(2*d1))})*i", "showpreview": true, "variableReplacements": [], "type": "jme"}], "scripts": {}, "marks": 0, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "showFeedbackIcon": true, "prompt": "\\[z=(\\var{z3})^{\\var{-d1}}\\]
$z=\\;\\;$[[0]]
\\[z=i^{\\var{n}}\\]
$z=\\;\\;$[[0]]
Express the following complex numbers $z$ in the form $a+bi$.
\nInput $a$ and $b$ as fractions and not as decimals.
", "advice": "a)
\nNote that for a complex number $z=a+bi$ we have:
\n$z\\overline{z}=|z|^2=a^2+b^2$.
\nBut since $\\var{conj(z1)}=\\overline{\\var{z1}}$ we have:
\\[\\begin{eqnarray*}z&=&(\\var{z1})^{\\var{c1}}(\\var{conj(z1)})^{\\var{c1}}\\\\ &=&((\\var{z1})(\\var{conj(z1)}))^{\\var{c1}}\\\\ &=&\\simplify[]{({re(z1)}^2+{im(z1)}^2)^{c1}}\\\\ &=&\\var{(re(z1)^2+im(z1)^2)^c1} \\end{eqnarray*}\\]
b)
\nNote that $(\\var{z2})^4=((\\var{z2})^2)^2$.
\nSince $(\\var{z2})^2=\\simplify[std]{{z2^2}}$ we have:
\\[(\\var{z2})^4=(\\simplify[std]{{z2^2}})^2=\\simplify[std]{{z2^4}}\\]
c)
We have
\\[ \\begin{eqnarray*} z&=&(\\var{z3})^{\\var{-d1}}\\\\ &=&\\frac{1}{(\\var{z3})^{\\var{d1}}}\\\\ &=&\\frac{(\\var{conj(z3)})^{\\var{d1}}}{(\\var{z3})^{\\var{d1}}(\\var{conj(z3)})^{\\var{d1}}}\\\\ &=&\\frac{\\var{conj(z3)^d1}}{\\var{abs(z3)^(2*d1)}}\\\\ &=&\\simplify[std]{{re(conj(z3^d1))}/{(abs(z3)^(2*d1))}+({im(conj(z3^d1))}/{round(abs(z3)^(2*d1))})*i} \\end{eqnarray*}\\]
d)
We have $i^2=-1,\\;\\;i^3=-i,\\;\\;i^4=1$.
So if $n=4m+r,\\;\\;0\\le r\\le 3$ we have \\[i^n=i^{4m+r}=(i^4)^m \\times i^r=i^r\\]
Hence since $\\var{n}=4\\times\\var{m}+\\var{rem}$ we have:
\\[i^{\\var{n}}=i^{\\var{rem}}=\\simplify{{i^rem}}\\]
Direct calculation of low positive and negative powers of complex numbers. Calculations involving a complex conjugate. Powers of $i$. Four parts.
", "licence": "Creative Commons Attribution 4.0 International"}, "ungrouped_variables": ["s3", "s2", "s1", "m", "s4", "d1", "rem", "c1", "n", "z1", "z2", "z3"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "type": "question", "contributors": [{"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}]}]}], "contributors": [{"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}]}