// Numbas version: exam_results_page_options {"name": "Sketching graphs: quadratics", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": [], "variablesTest": {"condition": "", "maxRuns": 100}, "name": "Sketching graphs: quadratics", "advice": "

See 5.1 and 5.2 for background and examples.

", "variables": {"b": {"definition": "[random(-5..5 except [-1,0,1]),\n random(-5..5 except [-1,0,1]),\n random(-5..5 except [-1,0,1])]", "templateType": "anything", "name": "b", "description": "", "group": "part a"}, "rand": {"definition": "shuffle([[1,1],[1,-1],[1,1],[1,-1]])", "templateType": "anything", "name": "rand", "description": "", "group": "part a"}, "c": {"definition": "[random(2..9)*rand[0][1],\n random(2..9)*rand[1][1],\n random(2..9)*rand[2][1]]", "templateType": "anything", "name": "c", "description": "", "group": "part a"}, "a": {"definition": "[random(1)*rand[0][0],\n random(1..3)*rand[1][0],\n random(1..3)*rand[2][0]]", "templateType": "anything", "name": "a", "description": "", "group": "part a"}}, "extensions": ["jsxgraph"], "statement": "", "variable_groups": [{"variables": ["a", "b", "c", "rand"], "name": "part a"}], "parts": [{"minMarks": 0, "choices": ["

{plot(0,a[0],b[0],c[0])}

", "

{plot(0,-a[0],b[0],c[0])}

", "

{plot(0,a[0],-b[0],c[0])}

", "

{plot(0,a[0],b[0],-c[0])}

", "{plot(0,-a[0],b[0],-c[0])}", "{plot(0,-a[0],-b[0],c[0])}"], "customMarkingAlgorithm": "", "type": "m_n_2", "adaptiveMarkingPenalty": 0, "shuffleChoices": true, "customName": "", "variableReplacements": [], "useCustomName": false, "showCorrectAnswer": true, "prompt": "

Sketch a graph of the quadratic \$\\simplify[basic,unitFactor]{y = {a[0]}x^2+{b[0]}x+{c[0]}}\$.  Include the \$y\$-intercepts, \$x\$-intercepts and the maximum or minimum point in your sketch.  (Note you may need a calculator for the \$x\$-intercepts).

\n

\n

Based on your sketch, which of the following is the graph of this quadratic?

", "showFeedbackIcon": true, "minAnswers": "0", "scripts": {}, "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "maxAnswers": 0, "warningType": "none", "displayColumns": 0, "marks": 0, "unitTests": [], "distractors": ["", "", "", "", "", ""], "displayType": "checkbox", "matrix": ["3", 0, 0, 0, 0, 0], "showCellAnswerState": true, "extendBaseMarkingAlgorithm": true}], "preamble": {"css": "", "js": ""}, "metadata": {"description": "

A quadratic function \$ax^2+bs+c\$ is given. Six parabolas are sketched. Question is to select the correct parabola.  Need to consider the y-intercept, the coefficient of x^2, and the x-coordinate of the minimum/maximum point.

", "licence": "Creative Commons Attribution 4.0 International"}, "functions": {"plot": {"language": "javascript", "parameters": [["n", "number"], ["a", "number"], ["b", "number"], ["c", "number"]], "type": "html", "definition": "// This functions plots a cubic with a certain number of\n// stationary points and roots.\n// It creates the board, sets it up, then returns an\n// HTML div tag containing the board.\n\n\n// Max and min x and y values for the axis.\nvar x_min = -10;\nvar x_max = 10;\nvar y_min = -15;\nvar y_max = 15;\n\n\n// First, make the JSXGraph board.\nvar div = Numbas.extensions.jsxgraph.makeBoard(\n '300px',\n '300px',\n {\n boundingBox: [x_min,y_max,x_max,y_min],\n axis: false,\n showNavigation: false,\n grid: false,\n axis:false,\n }\n);\n\n\n\n// div.board is the object created by JSXGraph, which you use to \n// manipulate elements\nvar board = div.board; \n\n// create the x-axis and y-axis\nvar xaxis = board.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\n//var xticks = board.create('ticks',[xaxis,1],{\n// drawLabels: true,\n// label: {offset: [-4, -10]},\n// minorTicks: 0\n//});\n\n// create the y-axis\nvar yaxis = board.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\n\n\n\n\n// Plot the function.\n// board.create('functiongraph',\n// [function(x){ return (x-a)*(x-a)+b},x_min,x_max]);\n\n//Define function depending on value of n.\nswitch(n) {\n case 0:\n var f = function(x) {return a*x*x+b*x+c; }\n break;\n \n case 1:\n var f = function(x) {return Math.log(x+a); }\n break;\n \n case 2:\n var f = function(x) {return a*x+b;}\n break;\n \n case 3:\n var f = function(x) {return Math.pow(2,x)*-a;}\n break;\n \n case 4:\n var f = function(x) {return a*x*(x-b)*(x-c);}\n break;\n \n}\n\n board.create('functiongraph', [f], {strokeWidth:3,strokeColor:'black'});\n\nreturn div;\n\n\n\n// Plot coordinates.\n// board.create('circle',[[x0,y0],0.1],{color:'red'});\n// board.create('text',[x0,y0+0.3,'A']);\n// board.create('circle',[[x1,y1],0.1],{color:'red'});\n// board.create('text',[x1,y1+0.3,'B']);\n// board.create('circle',[[x2,y2],0.1],{color:'red'});\n// board.create('text',[x2,y2+0.3,'C']);\n\nreturn div;"}}, "rulesets": {}, "ungrouped_variables": [], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}