// Numbas version: finer_feedback_settings {"name": "HW5 Prob1", "extensions": [], "custom_part_types": [], "resources": [["question-resources/hw5prob1and2.png", "hw5prob1and2.png"], ["question-resources/hw5sol1.png", "hw5sol1.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "HW5 Prob1", "tags": [], "metadata": {"description": "

Friction

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

\n

Determine whether the block shown is in equilibrium and find the magnitude and direction of the friction force when $\\theta=\\var{th}^\\circ$ and $P=\\var{P}\\,\\text{N}$

", "advice": "

\n

(a)

\n

Assume equilibrium

\n

$+\\!\\!\\nearrow\\sum F_y=0,\\quad\\implies\\quad N-(800\\,\\text{N})\\cos 25^\\circ +(\\var{P}\\,\\text{N})\\sin(\\var{th}^\\circ-25^\\circ)=0$

\n

$N=\\var{normal_force}\\,\\text{N}$

\n

$+\\!\\!\\searrow\\sum F_x=0,\\quad\\implies\\quad -F_\\mu+(800\\,\\text{N})\\sin 25^\\circ-(\\var{P}\\,\\text{N})\\cos (\\var{th}^\\circ-25^\\circ)=0$

\n

$F_\\mu=\\var{friction_force_trial}\\,\\text{N}$ is required for equilibrium.

\n

Maximum friction force: $F_m=\\mu_s N=0.2\\times\\var{normal_force}=\\var{max_friction_force}\\,\\text{N}$

\n
\n

Since $|F_\\mu| > F_m$, the block is sliding, 

\n

(b)

\n

and the magmitude of the friction force is

\n

\\[F_\\mu=\\mu_k N=\\var{abs(friction_force)}\\,\\text{N},\\quad\\var{direction_string}\\] 

\n
\n

\n
\n

Since $|F_\\mu| \\le F_m$, the block is in equilibrium, and

\n

(b)

\n

The magmitude of the friction force is

\n

\\[F_\\mu=\\var{abs(friction_force)}\\,\\text{N},\\quad\\var{direction_string}\\] 

\n
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"mu_s": {"name": "mu_s", "group": "Ungrouped variables", "definition": "0.2", "description": "", "templateType": "number", "can_override": false}, "th": {"name": "th", "group": "Ungrouped variables", "definition": "random(25 .. 70#5)", "description": "", "templateType": "randrange", "can_override": false}, "mu_k": {"name": "mu_k", "group": "Ungrouped variables", "definition": "0.15", "description": "", "templateType": "anything", "can_override": false}, "friction_force_trial": {"name": "friction_force_trial", "group": "Ungrouped variables", "definition": "precround(800*sin(radians(25))-P*cos(radians(th-25)),1)", "description": "

Positive if up the slope

", "templateType": "anything", "can_override": false}, "equil": {"name": "equil", "group": "Ungrouped variables", "definition": "if(abs(friction_force_trial)<=(mu_s*normal_force),[1,0],[0,1])", "description": "", "templateType": "anything", "can_override": false}, "direction": {"name": "direction", "group": "Ungrouped variables", "definition": "if(friction_force<0,[0,1],[1,0])", "description": "", "templateType": "anything", "can_override": false}, "max_friction_force": {"name": "max_friction_force", "group": "Ungrouped variables", "definition": "precround(mu_s*normal_force,1)", "description": "", "templateType": "anything", "can_override": false}, "normal_force": {"name": "normal_force", "group": "Ungrouped variables", "definition": "precround(800*cos(radians(25))-P*sin(radians(th-25)),1)", "description": "", "templateType": "anything", "can_override": false}, "friction_force": {"name": "friction_force", "group": "Ungrouped variables", "definition": "if(abs(friction_force_trial)<=(mu_s*normal_force),friction_force_trial,sign(friction_force_trial)*precround(mu_k*normal_force,1))", "description": "", "templateType": "anything", "can_override": false}, "direction_string": {"name": "direction_string", "group": "Ungrouped variables", "definition": "if(friction_force<0,\"down the slope\",\"up the slope\")", "description": "", "templateType": "anything", "can_override": false}, "P": {"name": "P", "group": "Ungrouped variables", "definition": "random(100 .. 500#20)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["th", "P", "normal_force", "mu_s", "mu_k", "friction_force_trial", "max_friction_force", "equil", "friction_force", "direction", "direction_string"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

(a) Is the block in equilibrium? [[0]]

\n

(b) The magnitude of the friction force (N) is [[1]]

\n

and it is directed [[2]]

", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

YES

", "

NO

"], "matrix": "{equil}"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "abs(friction_force)-1", "maxValue": "abs(friction_force)+1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

UP the slope $\\nwarrow$

", "

DOWN the slope $\\searrow$

"], "matrix": "{direction}"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Vladimir Vingoradov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1862/"}, {"name": "Haoyu Huang", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/17657/"}], "resources": ["question-resources/hw5prob1and2.png", "question-resources/hw5sol1.png"]}]}], "contributors": [{"name": "Vladimir Vingoradov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1862/"}, {"name": "Haoyu Huang", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/17657/"}]}