// Numbas version: finer_feedback_settings {"name": "Scalar Triple Product", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"extensions": [], "name": "Scalar Triple Product", "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "
Note that $\\boldsymbol{a}\\times \\boldsymbol{b}$ is a vector which is perpendicular to both $\\boldsymbol{a}$ and $\\boldsymbol{b}$ and hence to the plane through the origin containing $\\boldsymbol{a}$ and $\\boldsymbol{b}$.
\nSo if $\\boldsymbol{c}$ is perpendicular to $\\boldsymbol{a} \\times \\boldsymbol{b}$, i.e. $(\\boldsymbol{a}\\times \\boldsymbol{b})\\boldsymbol{\\cdot} \\boldsymbol{c} = 0$, it must lie on the same plane.
\nNow
\n\\begin{align}
\\boldsymbol{a} \\times \\boldsymbol{b} &= \\var{vector(x1,x2,x3)} \\times \\var{vector(y1,y2,y3)} \\\\[1em]
&= \\simplify[]{vector({x2}*{y3}-{x3}*{y2}, {x3}*{y1}-{x1}*{y3}, {x1}*{y2}-{x2}*{y1})} \\\\[1em]
&= \\var{vector(w1,w2,w3)}
\\end{align}
Hence
\n\\begin{align}
(\\boldsymbol{a}\\times \\boldsymbol{b})\\boldsymbol{\\cdot} \\boldsymbol{c} &= \\var{vector(w1,w2,w3)} \\boldsymbol{\\cdot} \\begin{pmatrix} \\var{z1} \\\\ \\var{z2} \\\\ \\lambda \\end{pmatrix} \\\\[1em]
&= \\simplify[]{{w1}*{z1}+{w2}*{z2}+{w3}*lambda} \\\\[1em]
&= \\simplify{{w1*z1+w2*z2}+{w3}*lambda}
\\end{align}
We now require a value of $\\lambda$ so that $(\\boldsymbol{a}\\times \\boldsymbol{b})\\boldsymbol{\\cdot} \\boldsymbol{c}=0$.
\\begin{align}
&&(\\boldsymbol{a}\\times \\boldsymbol{b})\\boldsymbol{\\cdot} \\boldsymbol{c} &= 0 \\\\
\\implies &&\\simplify{{w1*z1+w2*z2}+{w3}*lambda} &= 0 \\\\
\\implies &&\\lambda &= \\simplify[std]{{-w1*z1-w2*z2}/{w3}}
\\end{align}
You are given three vectors$,
\n\\begin{align}
\\boldsymbol{a} &= \\var{vector(x1,x2,x3)}, &
\\boldsymbol{b} &= \\var{vector(y1,y2,y3)}, &
\\boldsymbol{c} &= \\begin{pmatrix} \\var{z1} \\\\ \\var{z2} \\\\ \\lambda \\end{pmatrix}
\\end{align}
where $\\lambda$ is a parameter to be determined.
\nFind the value of $\\lambda$ such that $\\boldsymbol{a}$, $\\boldsymbol{b}$ and $\\boldsymbol{c}$ all lie on the same plane through the origin.
\n\n$\\lambda=$ [[0]].
\nEnter your answer as a fraction or integer and not a decimal.
", "gaps": [{"minValue": "lambda", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": true, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "allowFractions": true, "marks": 2, "variableReplacements": [], "notationStyles": ["plain", "en", "si-en"], "scripts": {}, "maxValue": "lambda", "mustBeReducedPC": 0, "type": "numberentry", "showCorrectAnswer": true, "mustBeReduced": false}], "showFeedbackIcon": true, "marks": 0, "type": "gapfill", "variableReplacements": []}], "statement": "", "ungrouped_variables": ["ty3", "lambda"], "tags": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": ""}, "functions": {}, "variable_groups": [{"name": "w", "variables": ["w1", "w2", "w3"]}, {"name": "s", "variables": ["s1", "s2", "s3", "s4", "s5", "s6"]}, {"name": "x", "variables": ["x1", "x2", "x3"]}, {"name": "y", "variables": ["y1", "y2", "y3"]}, {"name": "z", "variables": ["z1", "z2"]}], "preamble": {"js": "", "css": ""}, "type": "question", "contributors": [{"name": "Matthew Mears", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1688/"}]}]}], "contributors": [{"name": "Matthew Mears", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1688/"}]}