// Numbas version: finer_feedback_settings {"name": "ENG2033: Contact Mechanics: Twin-disc test", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Contact.png", "/srv/numbas/media/question-resources/Contact.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "ENG2033: Contact Mechanics: Twin-disc test", "tags": [], "metadata": {"description": "
A gold ball on a steel table - effect of its own weight.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "The size of the contact and the pressure between the contacting surfaces depends on:
\nMaterials: A single material property - the Elastic Contact Modulus ($E^*$) - combines the elastic properties of both contacting surfaces into an equivalent stiffness:
\n\\[{1 \\over E^*} = {1 - \\nu_1^2 \\over E_1} + {1 - \\nu_2^2 \\over E_2}\\]
\nwhere $E_1$ and $E_2$ are the Young's elastic moduli of the two materials, and $\\nu_1$ and $\\nu_2$ are the corresponding Poisson's ratios.
\nGeometry: The two simplest forms of contact between curved surfaces are:
\nIn either case, an equivalent radius $R$ can be defined. If both surfaces are convex, e.g., two balls touching, then:
\n\\[{1 \\over R} = {1 \\over R_1} + {1 \\over R_2}\\]
\nwhere $R_1$ is the radius of Surface 1 and $R_2$ is the radius of Surface 2. If, however, one surface is concave, e.g., a ball in a cup, then:
\n\\[{1 \\over R} = {1 \\over R_1} - {1 \\over R_2}\\]
\nwhere $R_1$ is the radius of (convex) Surface 1 and $R_2$ is the radius of (concave) Surface 2. (The 'cup' radius must be larger than the 'ball' radius.)
\nApplied Load: This is a little tricky because the same notation, $P$, is used to mean different things:
\n2D Contact: The peak contact pressure, $p_0$, and semi-contact width, $a$, are given by:
\n\\[p_0 = \\left({P E^* \\over \\pi R}\\right)^{1 \\over 2}\\]
\n\\[a = \\left({4 P R \\over \\pi E^*}\\right)^{1 \\over 2}\\]
\n3D Contact: The peak contact pressure, $p_0$, and semi-contact width, $a$, are given by:
\n\\[p_0 = \\left({6 P {E^*}^2 \\over \\pi^3 R^2}\\right)^{1 \\over 3}\\]
\n\\[a = \\left({3 P R \\over 4 E^*}\\right)^{1 \\over 3}\\]
", "advice": "${1 \\over R} = {1 \\over R_1} + {1 \\over R_2} = {1 \\over \\var{diawheel} \\div 2} + {1 \\over \\var{diarail} \\div 2}$ [units: mm$^{-1}$]
\nwhich can be rearranged to give $R = \\var{siground(R*1000,3)}$mm.
\n${1 \\over E^*} = {1 - \\nu_1^2 \\over E_1} + {1 - \\nu_2^2 \\over E_2} ={1 - 0.3^2 \\over 209 \\times 10^9} + {1 - 0.3^2 \\over 209 \\times 10^9}$
\nwhich can be rearranged to give $E^* = \\var{siground(ECM,3)}$GPa.
\n$p_0 = \\left({P E^* \\over \\pi R}\\right)^{1 \\over 2} =\\left({ \\left( \\var{load} \\times 10^3 \\div \\var{width} \\times 10^{-3} \\right) \\times \\var{siground(ECM,3)} \\times 10^9 \\over \\pi \\times \\var{siground(R*1000,3)} \\times 10^{-3}} \\right)^{1 \\over 2} = \\var{siground(p0,3)}$MPa.
\n$a = \\left({4 P R \\over \\pi E^*}\\right)^{1 \\over 2} = \\left({4 \\times\\left( \\var{load} \\times 10^3 \\div \\var{width} \\times 10^{-3} \\right) \\times \\var{siground(R*1000,3)} \\times 10^{-3} \\over \\pi \\times \\var{siground(ECM,3)} \\times 10^9}\\right)^{1 \\over 2} = \\var{siground(scw,3)}$mm.
\narea = $2 \\times \\var{siground(scw,3)}$mm $\\times \\var{width}$mm $= \\var{siground(area,3)}$mm$^2$.
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"scw": {"name": "scw", "group": "Ungrouped variables", "definition": "(4 * P * R / (pi * ECM * 10^9))^(1/2) * 1000", "description": "Semi-contact width. [Units: mm]
", "templateType": "anything", "can_override": false}, "p0": {"name": "p0", "group": "Ungrouped variables", "definition": "(P * ECM*10^9 / (pi * R))^(1/2) / 10^6", "description": "Peak contact pressure. [Units: MPa]
", "templateType": "anything", "can_override": false}, "load": {"name": "load", "group": "Ungrouped variables", "definition": "random(4..7#0.5)", "description": "Applied load. [Units: kN]
", "templateType": "anything", "can_override": false}, "diarail": {"name": "diarail", "group": "Ungrouped variables", "definition": "random(40..47#0.1)", "description": "Rail disc diameter. [Units: mm]
", "templateType": "anything", "can_override": false}, "ECM": {"name": "ECM", "group": "Ungrouped variables", "definition": "1/((1-0.3^2)/209+(1-0.3^2)/209)", "description": "Elastic Contact Modulus. [Units: GPa]
", "templateType": "anything", "can_override": false}, "width": {"name": "width", "group": "Ungrouped variables", "definition": "random(5..10)", "description": "Track width. [Units: mm]
", "templateType": "anything", "can_override": false}, "area": {"name": "area", "group": "Ungrouped variables", "definition": "2*scw*width", "description": "Contact area. [Units: mm$^2$]
", "templateType": "anything", "can_override": false}, "P": {"name": "P", "group": "Ungrouped variables", "definition": "(load*1000)/(width/1000)", "description": "Load per unit length. [Units: N/m]
", "templateType": "anything", "can_override": false}, "R": {"name": "R", "group": "Ungrouped variables", "definition": "1/(2000/diawheel+2000/diarail)", "description": "Equivalent radius. [Units: m]
", "templateType": "anything", "can_override": false}, "diawheel": {"name": "diawheel", "group": "Ungrouped variables", "definition": "random(40..47#0.1)", "description": "Wheel disc diameter. [Units: mm]
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["diawheel", "diarail", "R", "ECM", "width", "load", "P", "p0", "scw", "area"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Reference values:
\nIn a twin-disc test, a 'wheel' disc (machined from a steel train wheel) with diameter $\\var{diawheel}$ mm runs against a 'rail' disc (machined from a steel railway rail) with diameter $\\var{diarail}$ mm.
\nThe disc surfaces are cylindrical with the axes aligned. The width of the surfaces is $\\var{width}$ mm.
\nThe applied load is $\\var{load}$ kN.
\nCalculate:
\n