// Numbas version: finer_feedback_settings {"name": "Volume of revolution 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "b", "tv", "v", "sb", "sa"], "name": "Volume of revolution 1", "tags": ["Calculus", "calculus", "definite integration", "diagram", "integral", "integration", "rotation about an axis", "rotation about x axis", "volume integral", "volume of revolution"], "preamble": {"css": "", "js": ""}, "advice": "

Recall that if $V$ is the volume generated between the limits $x=a$ and $x=b$ by rotating the function about the $x$-axis then $\\displaystyle V=\\pi\\int_a^by^2\\;dx$.

\n

So we have:
\\[\\begin{eqnarray*} V&=&\\pi\\int_{\\var{c}\\pi}^{\\var{c+2}\\pi}\\simplify[std]{{a^2}(cos(x)+{b})^2}\\;dx\\\\ &=&\\var{a^2}\\pi\\int_{\\var{c}\\pi}^{\\var{c+2}\\pi}\\simplify[std]{cos(x)^2+{2*b}*cos(x)+{b^2}}\\;dx\\\\ &=&\\var{a^2}\\pi\\left[\\simplify[std]{((1 / 4) Sin(2*x) + (1 / 2) * x + {2 * b} * Sin(x) + {b ^ 2} * x)}\\right]_{\\var{c}\\pi}^{\\var{c+2}\\pi}\\\\ \\end{eqnarray*}\\]
Here we have used the identity $\\cos(x)^2=\\frac{1}{2}(1+\\cos(2x))$ in order to integrate $\\cos(x)^2$.

\n

Since $\\sin(n\\pi)=0$ for all integers $n$ we see that:
\\[\\begin{eqnarray*} V&=&\\var{a^2}\\pi\\frac{\\var{1+2b^2}}{\\var{2}}\\left(\\var{c+2}\\pi-\\var{c}\\pi\\right)\\\\ &=&\\var{a^2*(1+2b^2)}\\pi^2\\\\ &=&\\var{V}\\mbox{ to 3 decimal places} \\end{eqnarray*} \\]

", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"stepsPenalty": 0, "prompt": "\n

Find the volume of this object.

\n

$V=\\;\\;$[[0]]

\n

Enter your answer to 3 decimal places.

\n

Click on Show steps for information on volumes of revolution. You will not lose any marks.

\n ", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

Recall that if $V$ is the volume generated between the limits $x=a$ and $x=b$  then $\\displaystyle V=\\pi\\int_a^by^2\\;dx$.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "V", "minValue": "V", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

Consider the solid object that is obtained when the function: \\[y=\\simplify[std]{{a}(cos(x)+{b})}\\] is rotated by $2\\pi$ radians about the $x$-axis between the limits $x=\\var{c}\\pi$ and $x=\\var{c+2}\\pi$

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "sa*random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "sb*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "tv": {"definition": "pi^2*a^2*(1+2*b^2)", "templateType": "anything", "group": "Ungrouped variables", "name": "tv", "description": ""}, "v": {"definition": "precround(tV,3)", "templateType": "anything", "group": "Ungrouped variables", "name": "v", "description": ""}, "sb": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "sb", "description": ""}, "sa": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "sa", "description": ""}}, "metadata": {"notes": "\n \t\t

3/07/2012:

\n \t\t

Added tags.

\n \t\t

Checked calculations.

\n \t\t

Improved display of statement, prompt and Advice. 

\n \t\t

Wanted to put the Hint into Show steps - but cannot create Steps at present.

\n \t\t

No tolerance allowed. Must be exact to three decimal places.

\n \t\t

Note the use of $\\cos(x)^2$ instead of the standard $\\cos^2(x)$ as best to be consistent as we cannot use $\\cos^2(x)$ if any jme calculation is involved.

\n \t\t

20/07/2012:

\n \t\t

Added description.

\n \t\t

Added Show steps hint.

\n \t\t

Checked description.

\n \t\t

Perhaps the tolerance should be 1, not 0.001 given the magnitude of the answer.

\n \t\t

\n \t\t

25/07/2012:

\n \t\t

 

\n \t\t

Added tags.

\n \t\t

 

\n \t\t

Question appears to be working correctly.

\n \t\t

 

\n \t\t", "description": "

Rotate $y=a(\\cos(x)+b)$ by $2\\pi$ radians about the $x$-axis between $x=c\\pi$ and $x=(c+2)\\pi$. Find the volume of revolution.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "resources": []}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}