// Numbas version: finer_feedback_settings {"name": "Volume of revolution 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "b", "tv", "v", "sb", "sa"], "name": "Volume of revolution 1", "tags": ["Calculus", "calculus", "definite integration", "diagram", "integral", "integration", "rotation about an axis", "rotation about x axis", "volume integral", "volume of revolution"], "preamble": {"css": "", "js": ""}, "advice": "
Recall that if $V$ is the volume generated between the limits $x=a$ and $x=b$ by rotating the function about the $x$-axis then $\\displaystyle V=\\pi\\int_a^by^2\\;dx$.
\nSo we have:
\\[\\begin{eqnarray*} V&=&\\pi\\int_{\\var{c}\\pi}^{\\var{c+2}\\pi}\\simplify[std]{{a^2}(cos(x)+{b})^2}\\;dx\\\\ &=&\\var{a^2}\\pi\\int_{\\var{c}\\pi}^{\\var{c+2}\\pi}\\simplify[std]{cos(x)^2+{2*b}*cos(x)+{b^2}}\\;dx\\\\ &=&\\var{a^2}\\pi\\left[\\simplify[std]{((1 / 4) Sin(2*x) + (1 / 2) * x + {2 * b} * Sin(x) + {b ^ 2} * x)}\\right]_{\\var{c}\\pi}^{\\var{c+2}\\pi}\\\\ \\end{eqnarray*}\\]
Here we have used the identity $\\cos(x)^2=\\frac{1}{2}(1+\\cos(2x))$ in order to integrate $\\cos(x)^2$.
Since $\\sin(n\\pi)=0$ for all integers $n$ we see that:
\\[\\begin{eqnarray*} V&=&\\var{a^2}\\pi\\frac{\\var{1+2b^2}}{\\var{2}}\\left(\\var{c+2}\\pi-\\var{c}\\pi\\right)\\\\ &=&\\var{a^2*(1+2b^2)}\\pi^2\\\\ &=&\\var{V}\\mbox{ to 3 decimal places} \\end{eqnarray*} \\]
Find the volume of this object.
\n$V=\\;\\;$[[0]]
\nEnter your answer to 3 decimal places.
\nClick on Show steps for information on volumes of revolution. You will not lose any marks.
\n ", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Recall that if $V$ is the volume generated between the limits $x=a$ and $x=b$ then $\\displaystyle V=\\pi\\int_a^by^2\\;dx$.
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "V", "minValue": "V", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Consider the solid object that is obtained when the function: \\[y=\\simplify[std]{{a}(cos(x)+{b})}\\] is rotated by $2\\pi$ radians about the $x$-axis between the limits $x=\\var{c}\\pi$ and $x=\\var{c+2}\\pi$
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "sa*random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "sb*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "tv": {"definition": "pi^2*a^2*(1+2*b^2)", "templateType": "anything", "group": "Ungrouped variables", "name": "tv", "description": ""}, "v": {"definition": "precround(tV,3)", "templateType": "anything", "group": "Ungrouped variables", "name": "v", "description": ""}, "sb": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "sb", "description": ""}, "sa": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "sa", "description": ""}}, "metadata": {"notes": "\n \t\t3/07/2012:
\n \t\tAdded tags.
\n \t\tChecked calculations.
\n \t\tImproved display of statement, prompt and Advice.
\n \t\tWanted to put the Hint into Show steps - but cannot create Steps at present.
\n \t\tNo tolerance allowed. Must be exact to three decimal places.
\n \t\tNote the use of $\\cos(x)^2$ instead of the standard $\\cos^2(x)$ as best to be consistent as we cannot use $\\cos^2(x)$ if any jme calculation is involved.
\n \t\t20/07/2012:
\n \t\tAdded description.
\n \t\tAdded Show steps hint.
\n \t\tChecked description.
\n \t\tPerhaps the tolerance should be 1, not 0.001 given the magnitude of the answer.
\n \t\t \n \t\t25/07/2012:
\n \t\t\n \t\t
Added tags.
\n \t\t\n \t\t
Question appears to be working correctly.
\n \t\t\n \t\t", "description": "
Rotate $y=a(\\cos(x)+b)$ by $2\\pi$ radians about the $x$-axis between $x=c\\pi$ and $x=(c+2)\\pi$. Find the volume of revolution.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "resources": []}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}