// Numbas version: finer_feedback_settings {"name": "Geometry: trig on unit circle", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "tags": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

$x$ is given and (sin(x),cos(x)) is plotted on a unit circle.  Then the student is asked to determine sin(y) and cos(y), where y is closely related to x (e.g. y=-x, y=180+x, etc.)

"}, "variable_groups": [], "name": "Geometry: trig on unit circle", "ungrouped_variables": ["a", "angle", "x", "y"], "extensions": ["jsxgraph"], "variables": {"x": {"templateType": "anything", "name": "x", "definition": "[cos(angle[0]/180*pi),\ncos(angle[1]/180*pi),\ncos(angle[3]/180*pi)]", "description": "

The y-intercept.

", "group": "Ungrouped variables"}, "angle": {"templateType": "anything", "name": "angle", "definition": "[a]+shuffle([-a,180+a])+shuffle([360-a,180-a,90-a])", "description": "

The slope of the line.

", "group": "Ungrouped variables"}, "y": {"templateType": "anything", "name": "y", "definition": "[sin(angle[0]/180*pi),\nsin(angle[1]/180*pi),\nsin(angle[3]/180*pi)]", "description": "", "group": "Ungrouped variables"}, "a": {"templateType": "anything", "name": "a", "definition": "random(1..7 except 4)*10+random(1..9)", "description": "", "group": "Ungrouped variables"}}, "preamble": {"css": "", "js": ""}, "functions": {"dragpointa": {"type": "html", "language": "javascript", "definition": "// set up the board\nvar div = Numbas.extensions.jsxgraph.makeBoard('500px','500px',{boundingBox:[-1.2,1.2,1.2,-1.2],grid:true,labels:true});\nvar board = div.board;\n\n\n//plot circle of radius 1 centred at origin\nboard.create('functiongraph',\n [function(x){ return Math.sqrt(1-x*x)},-1,1]);\nboard.create('functiongraph',\n [function(x){ return -1*Math.sqrt(1-x*x)},-1,1]);\n\n\n\nvar a = board.create('point',[x0,y0],{size:3});\na.setProperty({fixed:true});\n\nvar b = board.create('point',[-0.2,0],{size:3});\nvar c = board.create('point',[0.2,0],{size:3});\n//var d = board.create('point',[0.4,0],{size:3});\n\nb.on('drag',function(){\n var x0 = Numbas.math.niceNumber(b.X());\n var y0 = Numbas.math.niceNumber(b.Y());\n Numbas.exam.currentQuestion.parts[0].gaps[2].display.studentAnswer(y0);\n Numbas.exam.currentQuestion.parts[0].gaps[3].display.studentAnswer(x0);\n});\nc.on('drag',function(){\n var x0 = Numbas.math.niceNumber(c.X());\n var y0 = Numbas.math.niceNumber(c.Y());\n Numbas.exam.currentQuestion.parts[0].gaps[6].display.studentAnswer(y0);\n Numbas.exam.currentQuestion.parts[0].gaps[7].display.studentAnswer(x0);\n});\n//d.on('drag',function(){\n// var x0 = Numbas.math.niceNumber(d.X());\n// var y0 = Numbas.math.niceNumber(d.Y());\n// Numbas.exam.currentQuestion.parts[0].gaps[6].display.studentAnswer(y0);\n// Numbas.exam.currentQuestion.parts[0].gaps[7].display.studentAnswer(x0);\n//});\n\nreturn div;\n\n\n", "parameters": [["x0", "number"], ["y0", "number"]]}, "answera": {"type": "html", "language": "javascript", "definition": "// set up the board\nvar div = Numbas.extensions.jsxgraph.makeBoard('500px','500px',{boundingBox:[-1.2,1.2,1.2,-1.2],grid:true,labels:true});\nvar board = div.board;\n\n\n//plot circle of radius 1 centred at origin\nboard.create('functiongraph',\n [function(x){ return Math.sqrt(1-x*x)},-1,1]);\nboard.create('functiongraph',\n [function(x){ return -1*Math.sqrt(1-x*x)},-1,1]);\n\n\n\nvar a = board.create('point',[x0,y0],{size:3});\nvar b = board.create('point',[x1,y1],{size:3});\nvar c = board.create('point',[x2,y2],{size:3});\n\n\n\nreturn div;\n\n", "parameters": [["x0", "number"], ["y0", "number"], ["x1", "number"], ["y1", "number"], ["x2", "number"], ["y2", "number"]]}}, "advice": "

{answera(x[0],y[0],x[1],y[1],x[2],y[2])}

\n

\n

See Lecture 6.1 and Question 7 on Workshop 6.2

", "parts": [{"type": "gapfill", "sortAnswers": false, "unitTests": [], "scripts": {}, "showCorrectAnswer": true, "gaps": [{"type": "numberentry", "maxValue": "precround(y[0],2)", "notationStyles": ["plain", "en", "si-en"], "unitTests": [], "scripts": {}, "correctAnswerFraction": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "minValue": "precround(y[0],2)", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "customMarkingAlgorithm": "", "mustBeReduced": false, "marks": "0.5", "mustBeReducedPC": 0}, {"type": "numberentry", "maxValue": "precround(x[0],2)", "notationStyles": ["plain", "en", "si-en"], "unitTests": [], "scripts": {}, "correctAnswerFraction": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "minValue": "precround(x[0],2)", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "customMarkingAlgorithm": "", "mustBeReduced": false, "marks": "0.5", "mustBeReducedPC": 0}, {"type": "numberentry", "maxValue": "y[1]+0.05", "notationStyles": ["plain", "en", "si-en"], "unitTests": [], "scripts": {}, "correctAnswerFraction": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "minValue": "y[1]-0.05", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "customMarkingAlgorithm": "", "mustBeReduced": false, "marks": "0.5", "mustBeReducedPC": 0}, {"type": "numberentry", "maxValue": "x[1]+0.05", "notationStyles": ["plain", "en", "si-en"], "unitTests": [], "scripts": {}, "correctAnswerFraction": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "minValue": "x[1]-0.05", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "customMarkingAlgorithm": "", "mustBeReduced": false, "marks": "0.5", "mustBeReducedPC": 0}, {"type": "numberentry", "maxValue": "precround(y[1],2)", "notationStyles": ["plain", "en", "si-en"], "unitTests": [], "scripts": {}, "correctAnswerFraction": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "minValue": "precround(y[1],2)", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "customMarkingAlgorithm": "", "mustBeReduced": false, "marks": "0.5", "mustBeReducedPC": 0}, {"type": "numberentry", "maxValue": "precround(x[1],2)", "notationStyles": ["plain", "en", "si-en"], "unitTests": [], "scripts": {}, "correctAnswerFraction": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "minValue": "precround(x[1],2)", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "customMarkingAlgorithm": "", "mustBeReduced": false, "marks": "0.5", "mustBeReducedPC": 0}, {"type": "numberentry", "maxValue": "y[2]+0.05", "notationStyles": ["plain", "en", "si-en"], "unitTests": [], "scripts": {}, "correctAnswerFraction": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "minValue": "y[2]-0.05", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "customMarkingAlgorithm": "", "mustBeReduced": false, "marks": "0.5", "mustBeReducedPC": 0}, {"type": "numberentry", "maxValue": "x[2]+0.05", "notationStyles": ["plain", "en", "si-en"], "unitTests": [], "scripts": {}, "correctAnswerFraction": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "minValue": "x[2]-0.05", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "customMarkingAlgorithm": "", "mustBeReduced": false, "marks": "0.5", "mustBeReducedPC": 0}, {"type": "numberentry", "maxValue": "precround(y[2],2)", "notationStyles": ["plain", "en", "si-en"], "unitTests": [], "scripts": {}, "correctAnswerFraction": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "minValue": "precround(y[2],2)", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "customMarkingAlgorithm": "", "mustBeReduced": false, "marks": "0.5", "mustBeReducedPC": 0}, {"type": "numberentry", "maxValue": "precround(x[2],2)", "notationStyles": ["plain", "en", "si-en"], "unitTests": [], "scripts": {}, "correctAnswerFraction": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "minValue": "precround(x[2],2)", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "customMarkingAlgorithm": "", "mustBeReduced": false, "marks": "0.5", "mustBeReducedPC": 0}], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "prompt": "

{dragpointa(x[0],y[0])}

\n

\n

To determine $\\sin(\\var{angle[0]}^{\\text{o}})$ and $\\cos(\\var{angle[0]}^{\\text{o}})$ using the circle, point $A$ was drawn.

\n

\n

(i) Use this to determine the following to 2 d.p.. (If you hover the mouse over the point $A$, you will be shown its coordinates.)

\n

$\\sin(\\var{angle[0]}^{\\text{o}}) =$ [[0]]

\n

$\\cos(\\var{angle[0]}^{\\text{o}}) =$ [[1]]

\n

\n

\n

(ii) We want to determine $\\sin(\\var{angle[1]}^{\\text{o}})$ and $\\cos(\\var{angle[1]}^{\\text{o}})$.

\n

First move $B$ to the appropriate location on the circle.  Hence, work out $\\sin$ and $\\cos$ to 2 d.p..

\n

$\\sin(\\var{angle[1]}^{\\text{o}}) =$ [[4]]

\n

$\\cos(\\var{angle[1]}^{\\text{o}}) =$ [[5]]

\n

\n

Hint: you first need to work out the connection between $\\var{angle[1]}$ and $\\var{angle[0]}$. Sometimes it is obvious (e.g. new angle is the negative of the original angle) but sometimes it is tricky (e.g. new angle is 180 minus the old angle).

\n

\n

\n

\n

\n

(iii) Do the same for $\\sin(\\var{angle[3]}^{\\text{o}})$ and $\\cos(\\var{angle[3]}^{\\text{o}})$ using $C$. First move $C$ then enter the numbers.

\n

$\\sin(\\var{angle[3]}^{\\text{o}}) =$ [[8]]

\n

$\\cos(\\var{angle[3]}^{\\text{o}}) =$ [[9]]

\n

\n

", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "customMarkingAlgorithm": "", "marks": 0}], "statement": "

This is a non-calculator question.

", "variablesTest": {"maxRuns": 100, "condition": ""}, "type": "question", "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}], "resources": []}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}