// Numbas version: exam_results_page_options {"name": "Volume of revolution 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["vol", "m", "a1", "tol", "td1", "tvol", "c1", "d1"], "name": "Volume of revolution 2", "tags": ["Calculus", "calculus", "definite integration", "diagram", "integral", "integration", "rotation about an axis", "rotation about y-axis", "volume integral", "volume of revolution"], "preamble": {"css": "", "js": ""}, "advice": "\n

a)
Given $y=\\var{a1}\\ln(\\var{m}x)$ we rearrange so that $x$ is the subject of the equation:
\\[\\begin{eqnarray*} y&=&\\var{a1}\\ln(\\var{m}x)\\\\ \\Rightarrow \\ln(\\var{m}x) &=&\\frac{y}{\\var{a1}}\\\\ \\Rightarrow \\var{m}x&=& e^{\\frac{y}{\\var{a1}}}\\\\ \\Rightarrow x&=&\\frac{1}{\\var{m}}e^{\\frac{y}{\\var{a1}}} \\end{eqnarray*} \\]
Hence \\[g(y)=\\frac{1}{\\var{m}}e^{\\frac{y}{\\var{a1}}}\\]

\n

b)
The volume of revolution is given by:
\\[V=\\pi\\int_{\\var{c1}}^{\\var{d1}}g(y)^2\\;dy\\]
Using the expression for $g(y)$ from the first part we have:
\\[\\begin{eqnarray*} V&=&\\pi\\int_{\\var{c1}}^{\\var{d1}}\\frac{1}{\\var{m^2}}\\simplify[std]{e^(2y/{a1})}\\;dy\\\\ &=&\\simplify[std]{({a1}/{2*m^2})*pi}\\left[\\simplify[std]{e^(2y/{a1})}\\right]_{\\var{c1}}^{\\var{d1}}\\\\ \\\\&=&\\var{tvol}\\pi = \\var{vol}\\pi \\end{eqnarray*} \\]
Hence the multiple of $\\pi$ to two decimal places is $\\var{vol}$.

\n ", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "\n \n \n

Rewrite this function in the form $x=g(y)$ , where $g(y)$ is a function of $y$ only.

\n \n \n \n

$x=g(y)=\\;\\;$[[0]]

\n \n \n ", "marks": 0, "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "marks": 1, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "(1 / {m}) * Exp(y / {a1})", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\n

Hence, find the volume of revolution, $V$ obtained as follows:

\n

Rotate $y=f(x)$ by $2\\pi$ radians about the $y$-axis, between the limits of $y=\\var{c1}$ and $y=\\var{d1}$.

\n

The volume $V$ can be written as a multiple of $\\pi$, $V=m\\pi$, where:

\n

$m=\\;\\;$[[0]].  Input $m$ to two decimal places.

\n ", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "vol+tol", "minValue": "vol-tol", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "

Consider the function \\[y=f(x)=\\var{a1}\\ln(\\var{m}x)\\]

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"vol": {"definition": "precround(tvol,2)", "templateType": "anything", "group": "Ungrouped variables", "name": "vol", "description": ""}, "m": {"definition": "random(2..8)", "templateType": "anything", "group": "Ungrouped variables", "name": "m", "description": ""}, "a1": {"definition": "random(2..8)", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "tol": {"definition": "0", "templateType": "anything", "group": "Ungrouped variables", "name": "tol", "description": ""}, "td1": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "td1", "description": ""}, "tvol": {"definition": "((a1)/(2*m^2))*(exp(2*d1/a1)-exp(2*c1/a1))", "templateType": "anything", "group": "Ungrouped variables", "name": "tvol", "description": ""}, "c1": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "c1", "description": ""}, "d1": {"definition": "if(td1<=c1,c1+1,td1)", "templateType": "anything", "group": "Ungrouped variables", "name": "d1", "description": ""}}, "metadata": {"notes": "\n \t\t

3/07/2012:

\n \t\t

Added tags.

\n \t\t

Improved display in statement and prompts, and Advice.

\n \t\t

No tolerance allowed in second part answer. Set new tolerance variable tol=0.

\n \t\t

Checked calculation.

\n \t\t

20/07/2012:

\n \t\t

Added description.

\n \t\t

Changed question format to hopefully make it clear that it is the multiple of $\\pi$ wanted.

\n \t\t

Checked calculation again.

\n \t\t

Should have a diagram of the volume - or a schematic version of revolving a function about the $y$-axis.

\n \t\t

\n \t\t

25/07/2012:

\n \t\t

 

\n \t\t

Added tags.

\n \t\t

\n \t\t

In the Advice section moved \\Rightarrow so that it is at the beginning of the line instead of the end of the previous line.

\n \t\t

 

\n \t\t

 

\n \t\t

Question appears to be working correctly.

\n \t\t

 

\n \t\t", "description": "

Rotate the graph of  $y=a\\ln(bx)$  by $2\\pi$ radians about the $y$-axis between $y=c$ and $y=d$. Find the volume of revolution.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}