// Numbas version: exam_results_page_options {"name": "Deirdre's copy of Find and use the formula for a geometric sequence", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["a", "r", "n", "nth_term"], "variablesTest": {"condition": "", "maxRuns": 100}, "extensions": [], "functions": {}, "preamble": {"css": "", "js": ""}, "tags": [], "variable_groups": [], "parts": [{"gaps": [{"correctAnswerStyle": "plain", "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showFeedbackIcon": true, "showCorrectAnswer": true, "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "minValue": "r", "variableReplacements": [], "scripts": {}, "mustBeReducedPC": 0, "type": "numberentry", "marks": 1, "maxValue": "r"}], "showCorrectAnswer": true, "variableReplacements": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "type": "gapfill", "marks": 0, "prompt": "
Find the common ratio for the following geometric series.
\n$\\var{a}, \\var{a*r}, \\var{a*r^2}, \\var{a*r^4}, \\ldots$
\nCommon ratio: [[0]]
"}, {"gaps": [{"vsetrange": [0, 1], "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "showCorrectAnswer": true, "variableReplacements": [], "scripts": {}, "marks": 1, "checkingaccuracy": 0.001, "expectedvariablenames": [], "checkingtype": "absdiff", "showpreview": true, "checkvariablenames": false, "vsetrangepoints": 5, "type": "jme", "answer": "{a}*{r}^(n-1)"}], "showCorrectAnswer": true, "variableReplacements": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "steps": [{"showCorrectAnswer": true, "variableReplacements": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "type": "information", "marks": 0, "prompt": "The formula for the $n^\\text{th}$ term of a geometric sequence is
\n\\[ a_n = ar^{(n-1)} \\]
\nwhere $a$ is the first term in the sequence and $r$ is the common ratio.
"}], "showFeedbackIcon": true, "stepsPenalty": 0, "type": "gapfill", "marks": 0, "prompt": "Write down the formula for the $n^\\text{th}$ term in the sequence
\n$a_n = $ [[0]]
"}, {"gaps": [{"correctAnswerStyle": "plain", "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showFeedbackIcon": true, "showCorrectAnswer": true, "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "minValue": "a*r^n", "variableReplacements": [], "scripts": {}, "mustBeReducedPC": 0, "type": "numberentry", "marks": 1, "maxValue": "a*r^n"}], "showCorrectAnswer": true, "variableReplacements": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "type": "gapfill", "marks": 0, "prompt": "What is the $\\var{n}^\\text{th}$ term in this sequence?
\n$a_\\var{n} =$ [[0]]
"}], "advice": "The terms in a geometric sequence are found by repeatedly multiplying the last term by a constant, called the common ratio.
\nTo find the common ratio, pick a term of the sequence and divide it by the previous term.
\nWe can calculate the common ratio using a table:
\n$n$ | \n$1$ | \n$2$ | \n$3$ | \n$4$ | \n
$a_n$ | \n$\\var{a}$ | \n$\\var{a*r}$ | \n$\\var{a*r^2}$ | \n$\\var{a*r^3}$ | \n
$a_n \\div a_{n-1}$ | \n\n | $\\var{r}$ | \n$\\var{r}$ | \n$\\var{r}$ | \n
The common ratio is $\\var{r}$.
\nThe general formula for the $n^\\text{th}$ term of a geometric sequence is
\n\\[\\displaystyle {a_n=ar^{(n-1)}\\text{,}}\\]
\nwhere $a$ is the first term, and $r$ is the common ratio.
\nSo the formula for this sequence is
\n\\[ a_n = \\simplify[]{ {a}*{r}^n } \\text{.} \\]
\nWe know from part b) that the formula for the $n^\\text{th}$ term is $a_n = \\simplify[]{ {a}*{r}^n}$.
\nTherefore the $\\var{n}^\\text{th}$ term in the sequence is
\n\\begin{align}
a_\\var{n} &= \\var{a} \\times \\var{r}^{\\var{b}} \\\\
&= \\var{a*r^n}
\\end{align}
Find the common ratio of a given geometric sequence, write down the formula for the nth term and use it to calculate a given term in the sequence.
"}, "rulesets": {}, "variables": {"r": {"templateType": "anything", "description": "The common ratio
", "definition": "random(3..8)", "group": "Ungrouped variables", "name": "r"}, "nth_term": {"templateType": "anything", "description": "", "definition": "a*r^n", "group": "Ungrouped variables", "name": "nth_term"}, "n": {"templateType": "anything", "description": "The index of a term to calculate.
\nThe range is picked so that the number is between 1,000 and 1,000,000.
", "definition": "random(ceil(log(1000,r)-log(a,r))..floor(log(1000000,r)-log(a,r)))", "group": "Ungrouped variables", "name": "n"}, "a": {"templateType": "anything", "description": "The first term
", "definition": "random(3..10 except r)", "group": "Ungrouped variables", "name": "a"}}, "statement": "", "name": "Deirdre's copy of Find and use the formula for a geometric sequence", "type": "question", "contributors": [{"name": "Deirdre Casey", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/681/"}]}]}], "contributors": [{"name": "Deirdre Casey", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/681/"}]}