// Numbas version: finer_feedback_settings {"name": "Cross product 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "g", "f", "s3", "s2", "s1", "s5", "s4", "inner"], "name": "Cross product 1", "tags": ["3 dimensional vector", "cross product", "Rebel", "REBEL", "rebel", "rebelmaths", "three dimensional vectors", "Vector", "vector", "vector product", "vectors"], "advice": "

\\[ \\begin{eqnarray*} \\boldsymbol{a\\times b}&=& \\begin{vmatrix} \\boldsymbol{i} & \\boldsymbol{j} &\\boldsymbol{k}\\\\ \\var{a} & \\var{b} & \\var{g}\\\\ \\var{c} & \\var{d} & \\var{f} \\end{vmatrix}\\\\ \\\\ &=&\\simplify[]{({b}*{f}-{g}*{d})v:i + ({g}*{c} - {a}*{f})v:j+({a}*{d}-{b}*{c})v:k}\\\\ \\\\ &=&\\simplify[std]{{b*f-g*d}v:i+{g*c-a*f}v:j+{a*d-b*c}v:k} \\end{eqnarray*} \\]

", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "

Find $\\boldsymbol{a\\times b} =\\;\\;$ [[0]]$\\boldsymbol{i}$+[[1]]$\\boldsymbol{j}$+[[2]]$\\boldsymbol{k}$

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "{b*f-g*d}", "minValue": "{b*f-g*d}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 6, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{g*c-a*f}", "minValue": "{g*c-a*f}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 6, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{a*d-b*c}", "minValue": "{a*d-b*c}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 6, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "

Given the vectors:
\\[\\boldsymbol{a}=\\simplify[std]{{a}v:i+{b}v:j+{g}v:k},\\;\\;\\;\\boldsymbol{b}=\\simplify[std]{{c}v:i+{d}v:j+{f}v:k}\\]

\n

answer the following question:

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "s1*random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "s3*random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "s2*random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "s4*random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "g": {"definition": "s1*random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "g", "description": ""}, "f": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "f", "description": ""}, "s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "s2": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}, "s5": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s5", "description": ""}, "s4": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s4", "description": ""}, "inner": {"definition": "{a*c+b*d+f*g}", "templateType": "anything", "group": "Ungrouped variables", "name": "inner", "description": ""}}, "metadata": {"description": "

Given vectors $\\boldsymbol{a,\\;b}$, find $\\boldsymbol{a\\times b}$

\n

rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}