// Numbas version: finer_feedback_settings {"name": "Addition - whole and decimal numbers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Addition - whole and decimal numbers", "tags": [], "metadata": {"description": "
Addition calculations to be carried out by hand, full worked solutions in feedback.
\n", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "Addition of numbers of any size.
\nCalculate the following without using a calculator.
", "advice": "\nTo add numbers we need to take into account their place value, so line numbers up placing the hundreds, tens and units in vertical columns.
\n\\[\\begin{align} \\var{a}&\\\\\\underline{+\\hspace{0.5cm}\\var{b}}&\\\\=\\hspace{1cm}\\end{align}\\]
\nAddition is started in the right hand column, the units. $\\var{au}+\\var{bu}=\\var{au+bu}$. Any tens in the answer to this are then carried across to be added to the tens total. In this case the answer has $\\var{((au+bu)-mod(au+bu,10))/10}$ in the tens column to carry across and $\\var{mod((au+bu),10)}$ in the units column which can go straight in for the answer.
\n\\[\\begin{align} \\var{a}&\\\\\\underline{+\\hspace{0.5cm}\\var{b}}&\\\\=\\hspace{0.5cm}\\ _\\var{((au+bu)-mod(au+bu,10))/10} \\var{mod(au+bu,10)}&\\\\\\end{align}\\]
\nThe next column is the tens column, $\\var{at}+\\var{bt}=\\var{at+bt}$ Add to this anything that was carried over from the units, $\\var{((au+bu)-(mod(au+bu,10)))/10}$, makes it $\\var{at+bt+((au+bu)-mod(au+bu,10))/10}$. As we are adding the tens column, the $\\var{mod(at+bt+((au+bu)-mod(au+bu,10))/10,10)}$ is placed in the answer in this position and the $\\var{(at+bt+((au+bu)-mod(au+bu,10))/10-(mod(at+bt+((au+bu)-mod(au+bu,10))/10,10)))/10}$ is carried across to the hundreds column.
\n\\[\\begin{align} \\var{a}&\\\\\\underline{+\\hspace{0.5cm}\\var{b}}&\\\\=\\hspace{0.5cm}\\ _\\var{(at+bt-mod(at+bt,10))/10} \\var{mod(at+bt+((au+bu)-mod(au+bu,10))/10,10)}\\var{mod(au+bu,10)}&\\\\\\end{align}\\]
\nThen finally the hundreds column. There is only one value in this column so all that is needed is for any digits carried over from the total of the tens column need to be added to this value. So this is $\\var{bh}+\\var{(at+bt-mod(at+bt,10))/10}=\\var{bh+(at+bt-mod(at+bt,10))/10}$. This is then placed in the answer in the appropriate position, in the hundreds column, if the answer has two digits then the first of these is carried across and placed in the thousands position.
\n\\[\\begin{align} \\var{a}&\\\\\\underline{+\\hspace{0.5cm}\\var{b}}&\\\\=\\hspace{0.5cm}\\var{a+b}\\end{align}\\]
\nIf there were more values then the process would continue until you had added each column in turn.
\n\\[\\begin{align} \\var{2*a}&\\\\\\underline{+\\hspace{0.5cm}\\var{b}}&\\\\=\\hspace{1cm}\\end{align}\\]
\nStarting with the units $\\var{mod(2*a,10)}+\\var{bu}=\\var{mod(2*a,10)+bu}$.
\nSo $\\var{((mod(2*a,10)+bu)-mod(mod(2*a,10)+bu,10))/10}$ is carried across to the tens column and $\\var{mod((mod(2*a,10)+bu),10)}$ in the units column answer.
\n\\[\\begin{align} \\var{2*a}&\\\\\\underline{+\\hspace{0.5cm}\\var{b}}&\\\\=\\hspace{0.5cm}\\ _\\var{((mod(2*a,10)+bu)-mod(mod(2*a,10)+bu,10))/10} \\var{mod(mod(2*a,10)+bu,10)}&\\\\\\end{align}\\]
\n\nThe next column, $\\var{(mod(2*a,100)-mod(2*a,10))/10}+\\var{bt}=\\var{(mod(2*a,100)-mod(2*a,10))/10+bt}$
\nAdd to this anything that was carried over from the units, $\\var{(mod(2*a,100)-mod(2*a,10))/10+bt}+\\var{((mod(2*a,10)+bu)-(mod(mod(2*a,10)+bu,10)))/10}=\\var{(mod(2*a,100)-mod(2*a,10))/10+bt+((mod(2*a,10)+bu)-mod(mod(2*a,10)+bu,10))/10}$.
\nSo $\\var{mod((mod(2*a,100)-mod(2*a,10))/10+bt+((mod(2*a,10)+bu)-mod(mod(2*a,10)+bu,10))/10,10)}$ is placed in the answer and $\\var{((mod(2*a,100)-mod(2*a,10))/10+bt-mod((mod(2*a,100)-mod(2*a,10))/10+bt,10))/10}$ is carried across to the hundreds column.
\n\n\\[\\begin{align} \\var{2*a}&\\\\\\underline{+\\hspace{0.5cm}\\var{b}}&\\\\=\\hspace{0.5cm}\\ _\\var{((mod(2*a,100)-mod(2*a,10))/10+bt-mod((mod(2*a,100)-mod(2*a,10))/10+bt,10))/10} \\var{mod((mod(2*a,100)-mod(2*a,10))/10+bt+((mod(2*a,10)+bu)-mod(mod(2*a,10)+bu,10))/10,10)}\\var{mod(mod(2*a,10)+bu,10)}&\\\\\\end{align}\\]
\n\nSimilarly for the hundreds column, $\\var{(mod(2*a,1000)-mod(2*a,100))/100}+\\var{bh}+\\var{((mod(2*a,100)-mod(2*a,10))/10+bt-mod((mod(2*a,100)-mod(2*a,10))/10+bt,10))/10}=\\var{(mod(2*a,1000)-mod(2*a,100))/100+bh+((mod(2*a,100)-mod(2*a,10))/10+bt-mod((mod(2*a,100)-mod(2*a,10))/10+bt,10))/10}$ This is then placed in the answer in the appropriate position, in the hundreds column, if the answer has two digits then the first of these is carried across and placed in the thousands position.
\n\\[\\begin{align} \\var{2*a}&\\\\\\underline{+\\hspace{0.5cm}\\var{b}}&\\\\=\\hspace{0.5cm}\\var{2*a+b}\\end{align}\\]
\n\n\nThe process for addition of decimals is the same as that for whole numbers, lining up place values and starting addition with the right hand column. The important thing to remember when adding decimals is to ensure that all the numbers are aligned by the decimal point, this ensures each column contains the right place value.
\nWhole numbers are lined up so that they are directly to the left of the point. For ease you can add 0's in spaces where there are no numbers, making each number have the same number of decimal places.
\n\\[\\begin{align} \\var{a3}&\\\\\\var{c3}&\\\\\\underline{+\\hspace{0.5cm}\\var{d}}&\\\\=\\hspace{2cm}\\end{align}\\]
\nThen carrying out addition down each column, starting with right hand column $0+0+\\var{sigformat(mod((1000*d),10),1)}=\\var{sigformat(mod((1000*d),10),1)}$.
\n\\[\\begin{align} \\var{a3}&\\\\\\var{c3}&\\\\\\underline{+\\hspace{0.5cm}\\var{d}}&\\\\=\\hspace{2cm}\\var{sigformat(mod((1000*d),10),1)}&\\end{align}\\]
\n\nContinuing in this way $0+\\var{mod((100*c),10)}+\\var{(mod((1000*d)-mod(1000*d,10),100))/10}=\\var{mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10}$
\nIn this case the answer has $\\var{(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10-(mod(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10,10)))/10}$ to carry across and $\\var{mod(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10,10)}$ which can go straight in for the answer.
\n\\[\\begin{align} \\var{a3}&\\\\\\var{c3}&\\\\\\underline{+\\hspace{0.5cm}\\var{d}}&\\\\=\\hspace{2cm}\\ _\\var{sigformat((mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10-(mod(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10,10)))/10,1)} \\var{sigformat(mod(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10,10),1)}\\var{sigformat(mod(1000*d,10),1)}&\\\\\\end{align}\\]
\n\nThe next column is $0+\\var{(mod(100*c,100)-mod(100*c,10))/10}+\\var{(mod(1000*d,1000)-mod(1000*d,100))/100}=\\var{(mod(100*c,100)-mod(100*c,10))/10+(mod(1000*d,1000)-mod(1000*d,100))/100}$
\nAdding anything carried over $\\var{(mod(100*c,100)-mod(100*c,10))/10+(mod(1000*d,1000)-mod(1000*d,100))/100}+\\var{(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10-(mod(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10,10)))/10}=\\var{(mod(100*c,100)-mod(100*c,10))/10+(mod(1000*d,1000)-mod(1000*d,100))/100+(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10-(mod(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10,10)))/10}$
\n\n\\[\\begin{align} \\var{a3}&\\\\\\var{c3}&\\\\\\underline{+\\hspace{0.5cm}\\var{d}}&\\\\=\\hspace{2cm}\\ _\\var{((mod(100*c,100)-mod(100*c,10))/10+(mod(1000*d,1000)-mod(1000*d,100))/100+(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10-(mod(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10,10)))/10-mod((mod(100*c,100)-mod(100*c,10))/10+(mod(1000*d,1000)-mod(1000*d,100))/100+(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10-(mod(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10,10)))/10,10))/10} .\\var{mod((mod(100*c,100)-mod(100*c,10))/10+(mod(1000*d,1000)-mod(1000*d,100))/100+(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10-(mod(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10,10)))/10,10)}\\var{mod(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10,10)}\\var{sigformat(mod(1000*d,10),1)}&\\\\\\end{align}\\]
\n\nSo for the above the carry across is $\\var{((mod(100*c,100)-mod(100*c,10))/10+(mod(1000*d,1000)-mod(1000*d,100))/100+(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10-(mod(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10,10)))/10-mod((mod(100*c,100)-mod(100*c,10))/10+(mod(1000*d,1000)-mod(1000*d,100))/100+(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10-(mod(mod((100*c),10)+(mod((1000*d)-mod((1000*d),10),100))/10,10)))/10,10))/10}$ and the addition continues in the same way as for the whole numbers to produce
\n\n\\[\\begin{align} \\var{a3}&\\\\\\var{c3}&\\\\\\underline{+\\hspace{0.5cm}\\var{d}}&\\\\=\\hspace{2cm}\\var{d+a+c}&\\end{align}\\]
\n\n\nAgain the first thing to do is to line the numbers up by thier decimal points. You do not need to put the numbers into size order but some people find this helpful.
\n\\[\\begin{align} \\var{j}&\\\\\\var{k}&\\\\\\underline{+\\hspace{0.5cm}\\var{l}}&\\\\=\\hspace{2cm}\\end{align}\\]
\nThen carrying out addition down each column, starting with right hand column $0+0+\\var{sigformat(mod((1000*l),10),1)}=\\var{sigformat(mod((1000*l),10),1)}$.
\n\\[\\begin{align} \\var{j}&\\\\\\var{k}&\\\\\\underline{+\\hspace{0.5cm}\\var{l}}&\\\\=\\hspace{2cm}\\var{sigformat(mod((1000*l),10),1)}&\\end{align}\\]
\n\nContinuing in this way $0+\\var{mod((100*k1),10)}+\\var{(mod((1000*l)-mod(1000*l,10),100))/10}=\\var{mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10}$
\nIn this case the answer has $\\var{(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10-(mod(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10,10)))/10}$ to carry across and $\\var{mod(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10,10)}$ which can go straight in for the answer.
\n\n\\[\\begin{align} \\var{j}&\\\\\\var{k}&\\\\\\underline{+\\hspace{0.5cm}\\var{l}}&\\\\=\\hspace{2cm}\\ _\\var{(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10-(mod(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10,10)))/10} \\var{mod(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10,10)}\\var{sigformat(mod(1000*l,10),1)}&\\\\\\end{align}\\]
\n\n\nThe next column is $0+\\var{(mod(100*k1,100)-mod(100*k1,10))/10}+\\var{(mod(1000*l,1000)-mod(1000*l,100))/100}=\\var{(mod(100*k1,100)-mod(100*k1,10))/10+(mod(1000*l,1000)-mod(1000*l,100))/100}$
\nAdding anything carried over $\\var{(mod(100*k1,100)-mod(100*k1,10))/10+(mod(1000*l,1000)-mod(1000*l,100))/100}+\\var{(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10-(mod(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10,10)))/10}=\\var{(mod(100*k1,100)-mod(100*k1,10))/10+(mod(1000*l,1000)-mod(1000*l,100))/100+(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10-(mod(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10,10)))/10}$
\n\n\\[\\begin{align} \\var{j}&\\\\\\var{k}&\\\\\\underline{+\\hspace{0.5cm}\\var{l}}&\\\\=\\hspace{2cm}\\ _\\var{((mod(100*k1,100)-mod(100*k1,10))/10+(mod(1000*l,1000)-mod(1000*l,100))/100+(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10-(mod(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10,10)))/10-mod((mod(100*k1,100)-mod(100*k1,10))/10+(mod(1000*l,1000)-mod(1000*l,100))/100+(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10-(mod(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10,10)))/10,10))/10} .\\var{mod((mod(100*k1,100)-mod(100*k1,10))/10+(mod(1000*l,1000)-mod(1000*l,100))/100+(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10-(mod(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10,10)))/10,10)}\\var{mod(mod((100*k1),10)+(mod((1000*l)-mod((1000*l),10),100))/10,10)}\\var{sigformat(mod(1000*l,10),1)}&\\\\\\end{align}\\]
\nAnd carrying on in the same way until all columns have been completed to give
\n\\[\\begin{align} \\var{j}&\\\\\\var{k}&\\\\\\underline{+\\hspace{0.5cm}\\var{l}}&\\\\=\\hspace{2cm}\\var{j1+k1+l}&\\end{align}\\]
\n\nAgain lining the numbers up around the decimal point and adding each column in turn gives
\n\n\\[\\begin{align} \\var{b3}&\\\\\\var{l}&\\\\\\underline{+\\hspace{0.5cm}\\var{c3}}&\\\\=\\hspace{2cm}\\var{b+l+c}&\\end{align}\\]
\n\n\nFor further examples and questions
\nMulti Digit Addition - Khan Academy
\nAdding Decimals - Khan Academy
\n\n\n\n\n\n\n", "rulesets": {}, "extensions": [], "variables": {"at": {"name": "at", "group": "Ungrouped variables", "definition": "(mod(a,100)-au)/10", "description": "", "templateType": "anything"}, "bh": {"name": "bh", "group": "Ungrouped variables", "definition": "(mod(b,1000)-mod(b,100))/100", "description": "Hundreds value of b
", "templateType": "anything"}, "abt": {"name": "abt", "group": "Ungrouped variables", "definition": "((mod((a+b),100)-(mod((a+b),10)))/10)", "description": "Digit in Tens pace value of a+b
", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(0.001 .. 1000#0.002)", "description": "decimal between 0 and 1000 , 3 decimal places
", "templateType": "randrange"}, "b3": {"name": "b3", "group": "Ungrouped variables", "definition": "dpformat(b,3)", "description": "b with 3 decimal placeholders
", "templateType": "anything"}, "abu": {"name": "abu", "group": "Ungrouped variables", "definition": "mod(a+b,10)", "description": "units digit of a+b
", "templateType": "anything"}, "bt": {"name": "bt", "group": "Ungrouped variables", "definition": "(mod(b,100)-mod(b,10))/10", "description": "Tens value of b
", "templateType": "anything"}, "ab": {"name": "ab", "group": "Ungrouped variables", "definition": "a+b", "description": "total of a +b
", "templateType": "anything"}, "k1": {"name": "k1", "group": "Ungrouped variables", "definition": "random(0 .. 50#0.01)", "description": "", "templateType": "randrange"}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(1003.1 .. 9000#100)", "description": "number containing zero's in middle
", "templateType": "randrange"}, "au": {"name": "au", "group": "Ungrouped variables", "definition": "mod(a,10)", "description": "Unit value of a
", "templateType": "anything"}, "j": {"name": "j", "group": "Ungrouped variables", "definition": "dpformat(j1,3)", "description": "J1 to 3 decimal places
", "templateType": "anything"}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "random(89.7 .. 9999#100)", "description": "Decimal Number with high numbers in
", "templateType": "randrange"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(0.01 .. 100#0.02)", "description": "Decimal between 0 and 100
", "templateType": "randrange"}, "j1": {"name": "j1", "group": "Ungrouped variables", "definition": "random(10 .. 1000#1)", "description": "whole number
", "templateType": "randrange"}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "dpformat(a,3)", "description": "", "templateType": "anything"}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "random(302.001 .. 1000#0.002)", "description": "", "templateType": "randrange"}, "c3": {"name": "c3", "group": "Ungrouped variables", "definition": "dpformat(c,3)", "description": "", "templateType": "anything"}, "abh": {"name": "abh", "group": "Ungrouped variables", "definition": "(mod(a+b,1000)-mod(a+b,100))/100", "description": "The digit in the hundreds postion for a+b
", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1 .. 99#1)", "description": "Integer between 1-99
", "templateType": "randrange"}, "bu": {"name": "bu", "group": "Ungrouped variables", "definition": "mod(b,10)", "description": "Unit value of b
", "templateType": "anything"}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "dpformat(k1,3)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(100 .. 999#1)", "description": "Integer between 100 and 999
", "templateType": "randrange"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "f", "g", "au", "at", "bu", "bt", "bh", "ab", "abu", "abt", "abh", "a3", "c3", "j1", "j", "k1", "k", "l", "b3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{a}+\\var{b}$=[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "a+b", "maxValue": "a+b", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{b}+\\var{a*2}$ =[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "b+2a", "maxValue": "b+2a", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{a}+\\var{c}+\\var{d}$=[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "a+c+d", "maxValue": "a+c+d", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{j1}+\\var{k1}+\\var{l}$=[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "j1+k1+l", "maxValue": "j1+k1+l", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{b}+\\var{l}+\\var{c}$=[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "b+l+c", "maxValue": "b+l+c", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Lyn Gardner", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1742/"}]}]}], "contributors": [{"name": "Lyn Gardner", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1742/"}]}