// Numbas version: exam_results_page_options {"name": "Sketching graphs: sketch 2^x", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "

This is a non-calculator question.

", "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Student is asked to sketch \$f(x)=2^x\$, by plotting several points and selecting the correct graph.

"}, "variables": {"y": {"name": "y", "templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "[2^x[0],\n 2^x[1],\n 2^x[2],\n 2^x[3],\n 2^x[4],\n 2^x[5],\n 2^x[6],\n 2^x[7]]"}, "x": {"name": "x", "templateType": "anything", "group": "Ungrouped variables", "description": "

The y-intercept.

", "definition": "[-3,-2,-1,0,1,2,3,4]"}}, "variable_groups": [], "rulesets": {}, "advice": "

\n

\n

See Lecture 6.3 for functions and 1.5 and 6.4 for exponentiation.

", "

", "

", "

"], "matrix": ["2", 0, 0, 0], "customMarkingAlgorithm": "", "minMarks": 0, "displayType": "radiogroup", "customName": ""}], "adaptiveMarkingPenalty": 0, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "customMarkingAlgorithm": "", "showCorrectAnswer": true, "useCustomName": false, "variableReplacementStrategy": "originalfirst", "customName": "", "marks": 0, "sortAnswers": false, "type": "gapfill", "prompt": "

{dragpoint()}

\n

We want to sketch a graph of the function \$f(x) = 2^x\$.  We will do this be plotting several points, and then seeing the overall pattern that emerges.

\n

\n

(i) By filling in a table like the one below, drag the points A to H to the correct location.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Point A B C D E F G H \$x\$ -3 -2 -1 0 1 2 3 4 \$f(x)\$
\n

\n

\n

(Note, to be marked correctly, you only need to move the points to within 0.1 of the exact location.)

\n

\n

\n

\n

(ii) Hence, select the graph of \$f(x)=2^x\$ from below:

\n

[[8]]

\n

", "extendBaseMarkingAlgorithm": true, "unitTests": []}], "ungrouped_variables": ["x", "y"], "preamble": {"js": "", "css": ""}, "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}