// Numbas version: finer_feedback_settings {"name": "Julie's copy of First order differential equations 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a1", "a3", "a2", "a4"], "name": "Julie's copy of First order differential equations 1", "tags": ["1st order differential equation", "boundary condition", "Calculus", "calculus", "differential equations", "Differential equations", "first order differential equation", "ode", "ODE", "ordinary differential equations", "rebelmaths", "separable variables", "separation of variables", "solving differential equations"], "advice": "\n
These are all separable first order differential equations.
\na)
\n$\\displaystyle{\\frac{dy}{dx}=\\frac{y}{\\var{a1}x} \\Rightarrow \\int \\frac{1}{y}\\;dy = \\frac{1}{\\var{a1}}\\int\\frac{1}{x}\\;dx \\Rightarrow \\ln(y)=\\frac{1}{\\var{a1}}\\ln(x)+C}$
\nExponentiation of both sides then gives $y=Ax^{1/\\var{a1}}$ where we have renamed the constant of integration.
\nTo find the particular solution satisfying $y=1$ at $x=2$, we have $\\displaystyle{1=A \\times 2^{1/\\var{a1}} \\Rightarrow A = \\frac{1}{2^{1/\\var{a1}}}}$
\nHence the solution is $\\displaystyle{y=\\left(\\frac{x}{2}\\right)^{1/\\var{a1}}}$
\nb)
\n$\\displaystyle{\\frac{dy}{dx}=-\\var{a2}\\frac{y}{x} \\Rightarrow \\int \\frac{1}{y}\\;dy = -\\var{a2}\\int\\frac{1}{x}\\;dx \\Rightarrow \\ln(y)=-\\var{a2}\\ln(x)+C}$
\nExponentiation of both sides then gives $y=Ax^{-\\var{a2}}$ where we have renamed the constant of integration.
\nThe particular solution satisfying $y=1$ at $x=2$, gives $A = 2^{\\var{a2}}$
\nHence the solution is $\\displaystyle{y=\\left(\\frac{2}{x}\\right)^{\\var{a2}}}$
\nc)
\n$\\displaystyle{\\frac{dy}{dx}=\\var{a3}\\frac{x}{y} \\Rightarrow \\int y\\;dy = \\var{a3}\\int x\\;dx \\Rightarrow \\frac{y^2}{2}=\\var{a3}\\frac{x^2}{2}+C\\Rightarrow y^2=\\var{a3}x^2+A}$
\nThe particular solution satisfying $y=1$ at $x=2$, gives $A = \\var{1-4*a3}$.
\nHence the solution is $\\displaystyle{y^2=\\simplify[std]{{a3}x^2+{1-4*a3}}}$.
\nd)
\n$\\displaystyle{\\frac{dy}{dx}=-\\var{a4}\\frac{x}{y} \\Rightarrow \\int y\\;dy = -\\var{a4}\\int x\\;dx \\Rightarrow y^2=-\\var{a4}x^2+A}$
\nThe particular solution satisfying $y=1$ at $x=2$, gives $A = \\var{1+4*a4}$.
\nHence the solution is $\\displaystyle{y^2=\\simplify[std]{{-a4}x^2+{1+4*a4}}}$.
\n ", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "\n$\\displaystyle{\\frac{dy}{dx}=\\frac{y}{\\var{a1}x}}$
\n$y=\\;\\;$[[0]]
\nDo not enter decimals in your answer; use only fractions or integers.
\n ", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"notallowed": {"message": "Input numbers as fractions or integers, not as decimals
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "variableReplacements": [], "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "(x/2)^(1/{a1})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "\n$\\displaystyle{\\frac{dy}{dx}=-\\var{a2}\\frac{y}{x}}$
\n$y=\\;\\;$[[0]]
\nDo not enter decimals in your answer; use only fractions or integers.
\n ", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"notallowed": {"message": "Input numbers as fractions or integers, not as decimals
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "variableReplacements": [], "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "(2/x)^({a2})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [1, 2]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "\n$\\displaystyle{\\frac{dy}{dx}=\\var{a3}\\frac{x}{y}}$
\nThe solution can be written in the form $y^2=f(x)$. Enter $f(x)$ in the box below
\n$y^2=\\;\\;$[[0]]
\nDo not enter decimals in your answer; use only fractions or integers.
\n ", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"notallowed": {"message": "Input numbers as fractions or integers, not as decimals
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "variableReplacements": [], "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{1-4*a3} + {a3} * (x ^ 2)", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "\n$\\displaystyle{\\frac{dy}{dx}=-\\var{a4}\\frac{x}{y}}$
\nThe solution can be written in the form $y^2=g(x)$. Enter $g(x)$ in the box below
\n$y^2=\\;\\;$[[0]]
\nDo not enter decimals in your answer; use only fractions or integers.
\n ", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"notallowed": {"message": "Input numbers as fractions or integers, not as decimals
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "variableReplacements": [], "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{1+4*a4} + {-a4} * (x ^ 2)", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "Separate the variables:
\nFind the solutions of the following ordinary differential equations satisfying the condition $y=1$ at $x=2$.
\nYou may find it instructive to sketch your various solutions (but this is not required for this CBA).
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a1": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a3": {"definition": "random(2..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "a3", "description": ""}, "a2": {"definition": "random(2..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}, "a4": {"definition": "random(2..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "a4", "description": ""}}, "metadata": {"description": "Solve 4 first order differential equations of two types:$\\displaystyle \\frac{dy}{dx}=\\frac{ax}{y},\\;\\;\\frac{dy}{dx}=\\frac{by}{x},\\;y(2)=1$ for all 4.
\nrebelmaths
\n", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}