// Numbas version: exam_results_page_options {"name": "Raphael's copy of Rearranging Logarithms involving Indices", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [{"name": "part c", "variables": ["p", "v", "q", "m"]}], "ungrouped_variables": ["x1", "y1", "z1", "b1", "c", "b4", "b", "b2"], "statement": "

When logarithms involve indices we can rearrange them using the rule,

\n

\$\\log_a(x^y)=y\\log_a(x)\\text{.}\$

\n

This can also be useful for removing integers from the front of logarithms.

#### a)

\n

i)

\n

We need to use the rule

\n

\$k\\log_a(x)=\\log_a(x^k)\\text{.}\$

\n

Subsituting in our values for $x$ and $k$ gives

\n

\$\\var{x1[3]}\\log_a(\\var{z1[0]})=\\log_a(\\var{z1[0]^x1[3]})\\text{.}\$

\n

ii)

\n

We need to use the rule

\n

\$k\\log_a(x)=\\log_a(x^k)\\text{.}\$

\n

Subsituting in our values for $x$ and $k$ gives

\n

\$\\var{x1[1]}\\log_a(\\var{z1[1]})=\\log_a(\\var{z1[1]^x1[1]})\\text{.}\$

\n

#### b)

\n

i)

\n

The rule for indices in logarithms also works the other way around,

\n

\$\\log_a(x^k)=k\\log_a(x)\\text{.}\$

\n

We can use this to rearrange our expression by substituting in values for $x$ and $k$.

\n

\\\begin{align} \\log_a(\\var{x1[3]^z1[5]})&=k\\log_a(\\var{x1[3]})\\\\ \\var{x1[3]^z1[5]}&=\\var{x1[3]}^k\\\\ \\var{x1[3]^z1[5]}&=\\var{x1[3]}^\\var{z1[5]}\\\\ k&=\\var{z1[5]}\\\\ \\log_a(\\var{x1[3]^z1[5]})&=\\var{z1[5]}\\log_a(\\var{x1[3]}) \\end{align}\

\n

ii)

\n

As with i) we can use the rule

\n

\$\\log_a(x^k)=k\\log_a(x)\\text{.}\$

\n

We can use this to rearrange our expression by substituting in values for $x$ and $k$.

\n

\\\begin{align} \\log_a(\\var{x1[5]^z1[6]})&=k\\log_a(\\var{x1[5]})\\\\ \\var{x1[5]^z1[6]}&=\\var{x1[5]}^k\\\\ \\var{x1[5]^z1[6]}&=\\var{x1[5]}^\\var{z1[6]}\\\\ k&=\\var{z1[6]}\\\\ \\log_a(\\var{x1[5]^z1[6]})&=\\var{z1[6]}\\log_a(\\var{x1[5]}) \\end{align}\

\n

#### c)

\n

i)

\n

From the structure of this question we can tell that the answer can be written in the form $k\\log_a(\\var{x1[3]})$, meaning all of the values in the expression

\n

\$\\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})\$

\n

can be written in the form $k\\log_a(\\var{x1[3]})$.

\n

If we look at each log individually we can make sure they all take this form.

\n

\\\begin{align} \\log_a(\\var{x1[3]^z1[2]})&=k\\log_a(\\var{x1[3]})\\\\ \\var{x1[3]^z1[2]}&=\\var{x1[3]}^k\\\\ \\var{x1[3]^z1[2]}&=\\var{x1[3]}^\\var{z1[2]}\\\\ k&=\\var{z1[2]}\\\\ \\log_a(\\var{x1[3]^z1[2]})&=\\var{z1[2]}\\log_a(\\var{x1[3]}) \\end{align}\

\n

We can now write our expression as

\n

\\\begin{align} \\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})&=\\var{z1[2]}\\log_a(\\var{x1[3]})+\\log_a(\\var{x1[3]})\\\\ &=\\var{z1[2]+1}\\log_a(\\var{x1[3]})\\text{.} \\end{align}\

\n

ii)

\n

From this question we know our answer is written in the form $k\\log_a(\\var{x1[4]})$, meaning all of the values in the expression

\n

\$\\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})\$

\n

can be written in the form $k\\log_a(\\var{x1[4]})$.

\n

If we look at each log individually we can make sure they all take this form.

\n

\\\begin{align} \\log_a(\\var{x1[4]^z1[1]})&=k\\log_a(\\var{x1[4]})\\\\ \\var{x1[4]^z1[1]}&=\\var{x1[4]}^k\\\\ \\var{x1[4]^z1[1]}&=\\var{x1[4]}^\\var{z1[1]}\\\\ k&=\\var{z1[1]}\\\\ \\log_a(\\var{x1[4]^z1[1]})&=\\var{z1[1]}\\log_a(\\var{x1[4]}) \\end{align}\

\n

\\\begin{align} \\log_a(\\var{x1[4]^z1[0]})&=k\\log_a(\\var{x1[4]})\\\\ \\var{x1[4]^z1[0]}&=\\var{x1[4]}^k\\\\ \\var{x1[4]^z1[0]}&=\\var{x1[4]}^\\var{z1[0]}\\\\ k&=\\var{z1[0]}\\\\ \\log_a(\\var{x1[4]^z1[0]})&=\\var{z1[0]}\\log_a(\\var{x1[4]}) \\end{align}\

\n

We can now write our expression as

\n

\\\begin{align} \\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})&=\\var{z1[1]}\\log_a(\\var{x1[4]})+\\var{z1[0]}\\log_a(\\var{x1[4]})\\\\ &=\\var{z1[1]+z1[0]}\\log_a(\\var{x1[4]})\\text{.} \\end{align}\

\n

iii)

\n

From this question we know our answer is written in the form $k\\log_a(\\var{x1[5]})$, meaning all of the values in the expression

\n

\$\\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})\$

\n

can be written in the form $k\\log_a(\\var{x1[5]})$.

\n

If we look at each log individually we can make sure they all take this form.

\n

\\\begin{align} \\log_a(\\var{x1[5]^z1[1]})&=k\\log_a(\\var{x1[5]})\\\\ \\var{x1[5]^z1[1]}&=\\var{x1[5]}^k\\\\ \\var{x1[5]^z1[1]}&=\\var{x1[5]}^\\var{z1[1]}\\\\ k&=\\var{z1[1]}\\\\ \\log_a(\\var{x1[5]^z1[1]})&=\\var{z1[1]}\\log_a(\\var{x1[5]}) \\end{align}\

\n

\\\begin{align} \\log_a(\\var{x1[5]^z1[2]})&=k\\log_a(\\var{x1[5]})\\\\ \\var{x1[5]^z1[2]}&=\\var{x1[5]}^k\\\\ \\var{x1[5]^z1[2]}&=\\var{x1[5]}^\\var{z1[2]}\\\\ k&=\\var{z1[2]}\\\\ \\log_a(\\var{x1[5]^z1[2]})&=\\var{z1[2]}\\log_a(\\var{x1[5]}) \\end{align}\

\n

\\\begin{align} \\log_a(\\var{x1[5]^z1[4]})&=k\\log_a(\\var{x1[5]})\\\\ \\var{x1[5]^z1[4]}&=\\var{x1[5]}^k\\\\ \\var{x1[5]^z1[4]}&=\\var{x1[5]}^\\var{z1[4]}\\\\ k&=\\var{z1[4]}\\\\ \\log_a(\\var{x1[5]^z1[4]})&=\\var{z1[4]}\\log_a(\\var{x1[5]}) \\end{align}\

\n

We can now write our expression as

\n

\\\begin{align} \\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})&=\\var{z1[1]}\\log_a(\\var{x1[5]})+\\var{z1[0]}\\log_a(\\var{x1[5]})-\\var{z1[4]}\\log_a(\\var{x1[5]})\\\\ &=\\var{z1[1]+z1[2]-z1[4]}\\log_a(\\var{x1[5]})\\text{.} \\end{align}\

", "parts": [{"showCorrectAnswer": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "prompt": "

Simplify the following expressions.

\n

i)

\n

$\\var{z1[0]}\\log_a(\\var{x1[3]})=\\log_a($ [[0]]$)$

\n

ii)

\n

$\\var{z1[1]}\\log_a(\\var{x1[1]})=\\log_a($ [[1]]$)$

", "gaps": [{"showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkvariablenames": false, "type": "jme", "marks": "0.14", "showFeedbackIcon": true, "variableReplacements": [], "checkingaccuracy": 0.001, "showpreview": true, "scripts": {}, "vsetrange": [0, 1], "checkingtype": "absdiff", "answer": "{x1[3]}^{z1[0]}"}, {"showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkvariablenames": false, "type": "jme", "marks": "0.14", "showFeedbackIcon": true, "variableReplacements": [], "checkingaccuracy": 0.001, "showpreview": true, "scripts": {}, "vsetrange": [0, 1], "checkingtype": "absdiff", "answer": "{x1[1]}^{z1[1]}"}], "type": "gapfill", "marks": 0, "scripts": {}, "showFeedbackIcon": true}, {"showCorrectAnswer": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "prompt": "

Simplify the following expressions.

\n

i)

\n

$\\log_a(\\var{x1[3]^z1[5]})=$ [[0]] $\\log_a(\\var{x1[3]})$

\n

ii)

\n

$\\log_a(\\var{x1[5]^z1[6]})=$ [[1]] $\\log_a(\\var{x1[5]})$

", "gaps": [{"showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkvariablenames": false, "type": "jme", "marks": "0.14", "showFeedbackIcon": true, "variableReplacements": [], "checkingaccuracy": 0.001, "showpreview": true, "scripts": {}, "vsetrange": [0, 1], "checkingtype": "absdiff", "answer": "{z1[5]}"}, {"showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkvariablenames": false, "type": "jme", "marks": "0.14", "showFeedbackIcon": true, "variableReplacements": [], "checkingaccuracy": 0.001, "showpreview": true, "scripts": {}, "vsetrange": [0, 1], "checkingtype": "absdiff", "answer": "{z1[6]}"}], "type": "gapfill", "marks": 0, "scripts": {}, "showFeedbackIcon": true}, {"showCorrectAnswer": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "prompt": "

i)

\n

$\\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})=$ [[0]]$\\log_a(\\var{x1[3]})$

\n

ii)

\n

$\\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})=$ [[1]]$\\log_a(\\var{x1[4]})$

\n

iii)

\n

$\\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})=$ [[2]]$\\log_a(\\var{x1[5]})$

", "gaps": [{"showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkvariablenames": false, "type": "jme", "marks": "0.14", "showFeedbackIcon": true, "variableReplacements": [], "checkingaccuracy": 0.001, "showpreview": true, "scripts": {}, "vsetrange": [0, 1], "checkingtype": "absdiff", "answer": "{z1[2]+1}"}, {"showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkvariablenames": false, "type": "jme", "marks": "0.14", "showFeedbackIcon": true, "variableReplacements": [], "checkingaccuracy": 0.001, "showpreview": true, "scripts": {}, "vsetrange": [0, 1], "checkingtype": "absdiff", "answer": "{z1[1]+z1[0]}"}, {"showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkvariablenames": false, "type": "jme", "marks": "0.16", "showFeedbackIcon": true, "variableReplacements": [], "checkingaccuracy": 0.001, "showpreview": true, "scripts": {}, "vsetrange": [0, 1], "checkingtype": "absdiff", "answer": "{z1[1]+z1[2]-z1[4]}"}], "type": "gapfill", "marks": 0, "scripts": {}, "showFeedbackIcon": true}], "variables": {"c": {"name": "c", "templateType": "anything", "definition": "b1^b4", "group": "Ungrouped variables", "description": ""}, "b1": {"name": "b1", "templateType": "anything", "definition": "random(2..8 #2)", "group": "Ungrouped variables", "description": ""}, "p": {"name": "p", "templateType": "anything", "definition": "random(3..6)", "group": "part c", "description": ""}, "b": {"name": "b", "templateType": "anything", "definition": "c/2", "group": "Ungrouped variables", "description": ""}, "z1": {"name": "z1", "templateType": "anything", "definition": "repeat(random(2..4),10)", "group": "Ungrouped variables", "description": ""}, "b2": {"name": "b2", "templateType": "anything", "definition": "b-2", "group": "Ungrouped variables", "description": ""}, "b4": {"name": "b4", "templateType": "anything", "definition": "random(2..4 except b1)", "group": "Ungrouped variables", "description": ""}, "x1": {"name": "x1", "templateType": "anything", "definition": "repeat(random(2..5),8)", "group": "Ungrouped variables", "description": ""}, "y1": {"name": "y1", "templateType": "anything", "definition": "random(2..6)", "group": "Ungrouped variables", "description": ""}, "q": {"name": "q", "templateType": "anything", "definition": "v^p", "group": "part c", "description": ""}, "m": {"name": "m", "templateType": "anything", "definition": "random(2..20)", "group": "part c", "description": ""}, "v": {"name": "v", "templateType": "anything", "definition": "random(2..10)", "group": "part c", "description": ""}}, "functions": {}, "preamble": {"css": "", "js": ""}, "variablesTest": {"condition": "", "maxRuns": 100}, "tags": [], "rulesets": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Use the rule $\\log_a(n^b) = b\\log_a(n)$ to rearrange some expressions.

"}, "extensions": [], "name": "Raphael's copy of Rearranging Logarithms involving Indices", "type": "question", "contributors": [{"name": "Raphael Stuhlmeier", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1961/"}]}]}], "contributors": [{"name": "Raphael Stuhlmeier", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1961/"}]}