// Numbas version: exam_results_page_options {"name": "Raphael's copy of Rearranging Logarithms involving Indices", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "preventleave": false, "showfrontpage": false}, "question_groups": [{"questions": [{"variables": {"m": {"templateType": "anything", "definition": "random(2..20)", "name": "m", "group": "part c", "description": ""}, "v": {"templateType": "anything", "definition": "random(2..10)", "name": "v", "group": "part c", "description": ""}, "c": {"templateType": "anything", "definition": "b1^b4", "name": "c", "group": "Ungrouped variables", "description": ""}, "x1": {"templateType": "anything", "definition": "repeat(random(2..5),8)", "name": "x1", "group": "Ungrouped variables", "description": ""}, "b4": {"templateType": "anything", "definition": "random(2..4 except b1)", "name": "b4", "group": "Ungrouped variables", "description": ""}, "q": {"templateType": "anything", "definition": "v^p", "name": "q", "group": "part c", "description": ""}, "p": {"templateType": "anything", "definition": "random(3..6)", "name": "p", "group": "part c", "description": ""}, "b1": {"templateType": "anything", "definition": "random(2..8 #2)", "name": "b1", "group": "Ungrouped variables", "description": ""}, "b": {"templateType": "anything", "definition": "c/2", "name": "b", "group": "Ungrouped variables", "description": ""}, "z1": {"templateType": "anything", "definition": "repeat(random(2..4),10)", "name": "z1", "group": "Ungrouped variables", "description": ""}, "b2": {"templateType": "anything", "definition": "b-2", "name": "b2", "group": "Ungrouped variables", "description": ""}, "y1": {"templateType": "anything", "definition": "random(2..6)", "name": "y1", "group": "Ungrouped variables", "description": ""}}, "metadata": {"description": "

Use the rule $\\log_a(n^b) = b\\log_a(n)$ to rearrange some expressions.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "parts": [{"variableReplacementStrategy": "originalfirst", "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "type": "gapfill", "scripts": {}, "prompt": "

Simplify the following expressions. 

\n

i)

\n

$\\var{z1[0]}\\log_a(\\var{x1[3]})=\\log_a($ [[0]]$)$

\n

ii)

\n

$\\var{z1[1]}\\log_a(\\var{x1[1]})=\\log_a($ [[1]]$)$

", "gaps": [{"variableReplacementStrategy": "originalfirst", "vsetrange": [0, 1], "answer": "{x1[3]}^{z1[0]}", "vsetrangepoints": 5, "marks": "0.14", "showpreview": true, "expectedvariablenames": [], "variableReplacements": [], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "showFeedbackIcon": true, "scripts": {}, "checkvariablenames": false}, {"variableReplacementStrategy": "originalfirst", "vsetrange": [0, 1], "answer": "{x1[1]}^{z1[1]}", "vsetrangepoints": 5, "marks": "0.14", "showpreview": true, "expectedvariablenames": [], "variableReplacements": [], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "showFeedbackIcon": true, "scripts": {}, "checkvariablenames": false}]}, {"variableReplacementStrategy": "originalfirst", "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "type": "gapfill", "scripts": {}, "prompt": "

Simplify the following expressions. 

\n

i)

\n

$\\log_a(\\var{x1[3]^z1[5]})=$ [[0]] $\\log_a(\\var{x1[3]})$

\n

ii)

\n

$\\log_a(\\var{x1[5]^z1[6]})=$ [[1]] $\\log_a(\\var{x1[5]})$

", "gaps": [{"variableReplacementStrategy": "originalfirst", "vsetrange": [0, 1], "answer": "{z1[5]}", "vsetrangepoints": 5, "marks": "0.14", "showpreview": true, "expectedvariablenames": [], "variableReplacements": [], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "showFeedbackIcon": true, "scripts": {}, "checkvariablenames": false}, {"variableReplacementStrategy": "originalfirst", "vsetrange": [0, 1], "answer": "{z1[6]}", "vsetrangepoints": 5, "marks": "0.14", "showpreview": true, "expectedvariablenames": [], "variableReplacements": [], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "showFeedbackIcon": true, "scripts": {}, "checkvariablenames": false}]}, {"variableReplacementStrategy": "originalfirst", "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "type": "gapfill", "scripts": {}, "prompt": "

i)

\n

$\\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})=$ [[0]]$\\log_a(\\var{x1[3]})$

\n

ii)

\n

$\\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})=$ [[1]]$\\log_a(\\var{x1[4]})$

\n

iii)

\n

$\\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})=$ [[2]]$\\log_a(\\var{x1[5]})$

", "gaps": [{"variableReplacementStrategy": "originalfirst", "vsetrange": [0, 1], "answer": "{z1[2]+1}", "vsetrangepoints": 5, "marks": "0.14", "showpreview": true, "expectedvariablenames": [], "variableReplacements": [], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "showFeedbackIcon": true, "scripts": {}, "checkvariablenames": false}, {"variableReplacementStrategy": "originalfirst", "vsetrange": [0, 1], "answer": "{z1[1]+z1[0]}", "vsetrangepoints": 5, "marks": "0.14", "showpreview": true, "expectedvariablenames": [], "variableReplacements": [], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "showFeedbackIcon": true, "scripts": {}, "checkvariablenames": false}, {"variableReplacementStrategy": "originalfirst", "vsetrange": [0, 1], "answer": "{z1[1]+z1[2]-z1[4]}", "vsetrangepoints": 5, "marks": "0.16", "showpreview": true, "expectedvariablenames": [], "variableReplacements": [], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "showFeedbackIcon": true, "scripts": {}, "checkvariablenames": false}]}], "ungrouped_variables": ["x1", "y1", "z1", "b1", "c", "b4", "b", "b2"], "statement": "

When logarithms involve indices we can rearrange them using the rule,

\n

\\[\\log_a(x^y)=y\\log_a(x)\\text{.}\\]

\n

This can also be useful for removing integers from the front of logarithms.

", "preamble": {"js": "", "css": ""}, "variablesTest": {"condition": "", "maxRuns": 100}, "contributors": [{"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1961/", "name": "Raphael Stuhlmeier"}], "functions": {}, "advice": "

a)

\n

i)

\n

We need to use the rule

\n

\\[k\\log_a(x)=\\log_a(x^k)\\text{.}\\]

\n

Subsituting in our values for $x$ and $k$ gives

\n

\\[\\var{x1[3]}\\log_a(\\var{z1[0]})=\\log_a(\\var{z1[0]^x1[3]})\\text{.}\\]

\n

ii)

\n

We need to use the rule

\n

\\[k\\log_a(x)=\\log_a(x^k)\\text{.}\\]

\n

Subsituting in our values for $x$ and $k$ gives

\n

\\[\\var{x1[1]}\\log_a(\\var{z1[1]})=\\log_a(\\var{z1[1]^x1[1]})\\text{.}\\]

\n

b)

\n

i)

\n

The rule for indices in logarithms also works the other way around,

\n

\\[\\log_a(x^k)=k\\log_a(x)\\text{.}\\]

\n

We can use this to rearrange our expression by substituting in values for $x$ and $k$.

\n

\\[\\begin{align}
\\log_a(\\var{x1[3]^z1[5]})&=k\\log_a(\\var{x1[3]})\\\\
\\var{x1[3]^z1[5]}&=\\var{x1[3]}^k\\\\
\\var{x1[3]^z1[5]}&=\\var{x1[3]}^\\var{z1[5]}\\\\
k&=\\var{z1[5]}\\\\
\\log_a(\\var{x1[3]^z1[5]})&=\\var{z1[5]}\\log_a(\\var{x1[3]})
\\end{align}\\]

\n

ii)

\n

As with i) we can use the rule

\n

\\[\\log_a(x^k)=k\\log_a(x)\\text{.}\\]

\n

We can use this to rearrange our expression by substituting in values for $x$ and $k$.

\n

\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[6]})&=k\\log_a(\\var{x1[5]})\\\\
\\var{x1[5]^z1[6]}&=\\var{x1[5]}^k\\\\
\\var{x1[5]^z1[6]}&=\\var{x1[5]}^\\var{z1[6]}\\\\
k&=\\var{z1[6]}\\\\
\\log_a(\\var{x1[5]^z1[6]})&=\\var{z1[6]}\\log_a(\\var{x1[5]})
\\end{align}\\]

\n

c)

\n

i)

\n

From the structure of this question we can tell that the answer can be written in the form $k\\log_a(\\var{x1[3]})$, meaning all of the values in the expression

\n

\\[\\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})\\]

\n

can be written in the form $k\\log_a(\\var{x1[3]})$.

\n

If we look at each log individually we can make sure they all take this form.

\n

\\[\\begin{align}
\\log_a(\\var{x1[3]^z1[2]})&=k\\log_a(\\var{x1[3]})\\\\
\\var{x1[3]^z1[2]}&=\\var{x1[3]}^k\\\\
\\var{x1[3]^z1[2]}&=\\var{x1[3]}^\\var{z1[2]}\\\\
k&=\\var{z1[2]}\\\\
\\log_a(\\var{x1[3]^z1[2]})&=\\var{z1[2]}\\log_a(\\var{x1[3]})
\\end{align}\\]

\n

We can now write our expression as

\n

\\[\\begin{align}
\\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})&=\\var{z1[2]}\\log_a(\\var{x1[3]})+\\log_a(\\var{x1[3]})\\\\
&=\\var{z1[2]+1}\\log_a(\\var{x1[3]})\\text{.}
\\end{align}\\]

\n

ii)

\n

From this question we know our answer is written in the form $k\\log_a(\\var{x1[4]})$, meaning all of the values in the expression

\n

\\[\\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})\\]

\n

can be written in the form $k\\log_a(\\var{x1[4]})$.

\n

If we look at each log individually we can make sure they all take this form.

\n

\\[\\begin{align}
\\log_a(\\var{x1[4]^z1[1]})&=k\\log_a(\\var{x1[4]})\\\\
\\var{x1[4]^z1[1]}&=\\var{x1[4]}^k\\\\
\\var{x1[4]^z1[1]}&=\\var{x1[4]}^\\var{z1[1]}\\\\
k&=\\var{z1[1]}\\\\
\\log_a(\\var{x1[4]^z1[1]})&=\\var{z1[1]}\\log_a(\\var{x1[4]})
\\end{align}\\]

\n

\\[\\begin{align}
\\log_a(\\var{x1[4]^z1[0]})&=k\\log_a(\\var{x1[4]})\\\\
\\var{x1[4]^z1[0]}&=\\var{x1[4]}^k\\\\
\\var{x1[4]^z1[0]}&=\\var{x1[4]}^\\var{z1[0]}\\\\
k&=\\var{z1[0]}\\\\
\\log_a(\\var{x1[4]^z1[0]})&=\\var{z1[0]}\\log_a(\\var{x1[4]})
\\end{align}\\]

\n

We can now write our expression as

\n

\\[\\begin{align}
\\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})&=\\var{z1[1]}\\log_a(\\var{x1[4]})+\\var{z1[0]}\\log_a(\\var{x1[4]})\\\\
&=\\var{z1[1]+z1[0]}\\log_a(\\var{x1[4]})\\text{.}
\\end{align}\\]

\n

iii)

\n

From this question we know our answer is written in the form $k\\log_a(\\var{x1[5]})$, meaning all of the values in the expression

\n

\\[\\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})\\]

\n

can be written in the form $k\\log_a(\\var{x1[5]})$.

\n

If we look at each log individually we can make sure they all take this form.

\n

\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[1]})&=k\\log_a(\\var{x1[5]})\\\\
\\var{x1[5]^z1[1]}&=\\var{x1[5]}^k\\\\
\\var{x1[5]^z1[1]}&=\\var{x1[5]}^\\var{z1[1]}\\\\
k&=\\var{z1[1]}\\\\
\\log_a(\\var{x1[5]^z1[1]})&=\\var{z1[1]}\\log_a(\\var{x1[5]})
\\end{align}\\]

\n

\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[2]})&=k\\log_a(\\var{x1[5]})\\\\
\\var{x1[5]^z1[2]}&=\\var{x1[5]}^k\\\\
\\var{x1[5]^z1[2]}&=\\var{x1[5]}^\\var{z1[2]}\\\\
k&=\\var{z1[2]}\\\\
\\log_a(\\var{x1[5]^z1[2]})&=\\var{z1[2]}\\log_a(\\var{x1[5]})
\\end{align}\\]

\n

\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[4]})&=k\\log_a(\\var{x1[5]})\\\\
\\var{x1[5]^z1[4]}&=\\var{x1[5]}^k\\\\
\\var{x1[5]^z1[4]}&=\\var{x1[5]}^\\var{z1[4]}\\\\
k&=\\var{z1[4]}\\\\
\\log_a(\\var{x1[5]^z1[4]})&=\\var{z1[4]}\\log_a(\\var{x1[5]})
\\end{align}\\]

\n

We can now write our expression as

\n

\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})&=\\var{z1[1]}\\log_a(\\var{x1[5]})+\\var{z1[0]}\\log_a(\\var{x1[5]})-\\var{z1[4]}\\log_a(\\var{x1[5]})\\\\
&=\\var{z1[1]+z1[2]-z1[4]}\\log_a(\\var{x1[5]})\\text{.}
\\end{align}\\]

", "variable_groups": [{"name": "part c", "variables": ["p", "v", "q", "m"]}], "tags": [], "name": "Raphael's copy of Rearranging Logarithms involving Indices", "rulesets": {}, "extensions": []}], "pickingStrategy": "all-ordered"}], "contributors": [{"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1961/", "name": "Raphael Stuhlmeier"}]}