// Numbas version: exam_results_page_options {"name": "Polar coordinates", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"type": "gapfill", "scripts": {}, "marks": 0, "prompt": "

Enter your answer correct to 3 decimal places.

\n

Answer=[[0]]

", "sortAnswers": false, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "variableReplacements": [], "showCorrectAnswer": true, "unitTests": [], "extendBaseMarkingAlgorithm": true, "gaps": [{"strictPrecision": false, "precision": "3", "notationStyles": ["plain", "en", "si-en"], "precisionType": "dp", "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true, "showPrecisionHint": false, "unitTests": [], "extendBaseMarkingAlgorithm": true, "minValue": "{a}*{pi}*(1-cos({t}*{pi}/{k}))/(2*{t})", "precisionPartialCredit": 0, "marks": 1, "scripts": {}, "correctAnswerFraction": false, "customMarkingAlgorithm": "", "precisionMessage": "You have not given your answer to the correct precision.", "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "maxValue": "{a}*{pi}*(1-cos({t}*{pi}/{k}))/(2*{t})", "variableReplacements": [], "allowFractions": false, "mustBeReducedPC": 0, "type": "numberentry"}]}], "ungrouped_variables": ["a", "k", "t"], "metadata": {"licence": "Creative Commons Attribution-NonCommercial 4.0 International", "description": ""}, "advice": "

\\(\\int_R\\int\\var{a}sin(\\var{t}(x^2+y^2))dxdy\\)

\n

Limits

\n

\\(x^2+y^2\\le\\frac{\\pi}{\\var{k}}\\) and \\(y\\ge0\\)

\n

This is the upper half of the circle centred on \\((0,0)\\) with radius \\(\\sqrt{\\frac{\\pi}{\\var{k}}}\\)

\n

\\(x=rcos(\\theta)\\)      and      \\(y=rsin(\\theta)\\)

\n

\\(0\\le r\\le\\sqrt{\\frac{\\pi}{\\var{k}}}\\)       and        \\(0\\le \\theta\\le\\pi\\)

\n

\n

\\(dxdy=rdrd\\theta\\)

\n

The function

\n

\\(x^2+y^2=r^2\\)

\n

\\(\\implies \\var{a}sin(\\var{t}(x^2+y^2))=\\var{a}sin(\\var{t}r^2)\\)

\n

\n

\\(\\int_R\\int\\var{a}sin(\\var{t}(x^2+y^2))dxdy=\\int_0^{\\pi}\\int_0^{\\sqrt{\\frac{\\pi}{\\var{k}}}}\\var{a}sin(\\var{t}r^2)rdrd\\theta\\)

\n

Inner integral

\n

\\(\\int_0^{\\sqrt{\\frac{\\pi}{\\var{k}}}}\\var{a}sin(\\var{t}r^2)rdr=-\\frac{\\var{a}}{\\simplify{{t}*2}}cos(\\var{t}r^2)\\big|_0^{\\sqrt{\\frac{\\pi}{\\var{k}}}}\\)

\n

\\(=-\\frac{\\var{a}}{\\simplify{{t}*2}}cos(\\frac{\\var{t}\\pi}{\\var{k}})-\\left(-\\frac{\\var{a}}{\\simplify{{t}*2}}cos(0)\\right)\\)

\n

\\(=-\\frac{\\var{a}}{\\simplify{{t}*2}}cos(\\frac{\\var{t}\\pi}{\\var{k}})+\\frac{\\var{a}}{\\simplify{{t}*2}}\\)

\n

\\(=\\frac{\\var{a}}{\\simplify{{t}*2}}\\left(1-cos(\\frac{\\var{t}\\pi}{\\var{k}})\\right)\\)

\n

\\(=\\simplify{{a}*(1-cos({t}*{pi}/{k}))/(2*{t})}\\)

\n

\n

Outer Integral

\n

\\(\\int_0^{\\pi}\\simplify{{a}*(1-cos({t}*{pi}/{k}))/(2*{t})}d\\theta\\)

\n

\\(=\\simplify{{a}*(1-cos({t}*{pi}/{k}))/(2*{t})}\\theta\\big|_0^\\var{pi}\\)

\n

\\(=\\simplify{{a}*(1-cos({t}*{pi}/{k}))/(2*{t})}{\\pi}-0\\)

\n

\\(=\\simplify{{a}*{pi}*(1-cos({t}*{pi}/{k}))/(2*{t})}\\)

", "rulesets": {}, "tags": [], "preamble": {"js": "", "css": ""}, "variable_groups": [], "variables": {"t": {"templateType": "randrange", "group": "Ungrouped variables", "name": "t", "definition": "random(2..8#1)", "description": ""}, "a": {"templateType": "randrange", "group": "Ungrouped variables", "name": "a", "definition": "random(2..16#1)", "description": ""}, "k": {"templateType": "randrange", "group": "Ungrouped variables", "name": "k", "definition": "random(2..10#1)", "description": ""}}, "extensions": [], "variablesTest": {"condition": "", "maxRuns": 100}, "functions": {}, "name": "Polar coordinates", "statement": "

Evaluate the integral below using polar co-ordinates:

\n

\\(\\int\\int_R\\var{a}sin(\\var{t}(x^2+y^2))dxdy\\)

\n

where \\(R\\) is the region of the plane enclosed by the circle \\(x^2+y^2\\le\\frac{\\pi}{\\var{k}}\\) and \\(y\\ge0\\).

\n

", "type": "question", "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}]}]}], "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}]}