// Numbas version: exam_results_page_options {"name": "3. Change of Type (2 to 1)", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {"plot": {"definition": "var a = Numbas.jme.unwrapValue(scope.variables.a); // define random parameter r1\nvar b = Numbas.jme.unwrapValue(scope.variables.b); // define random parameter r2\nvar c = Numbas.jme.unwrapValue(scope.variables.c); // define random parameter r2\nvar d = Numbas.jme.unwrapValue(scope.variables.d); // define random parameter r2\nvar p = Numbas.jme.unwrapValue(scope.variables.p); // define random parameter r2\nvar q = Numbas.jme.unwrapValue(scope.variables.q); // define random parameter r2\n\nf = b*Math.log(c*q)+d\n\nvar makeboard = Numbas.extensions.jsxgraph.makeBoard\n('250px','250px',{boundingBox:[-1,f+1,q+1,-2], axis:true, grid:false}); // define how the graph is displayed\nvar board = makeboard.board; // generate the graph\n\nvar p1 = board.create('point', [q,0], {visible:false});\nvar p2 = board.create('point', [q,f], {visible:false});\n\n\nvar ln = board.create('curve',\n [function(y){return y;},\n function(y){return b*Math.log(c*y)+d;},\n p, q]);\nvar ln_dash = board.create('curve',\n [function(y){return y;},\n function(y){return b*Math.log(c*y)+d;},\n 0, q+1], {dash:2});\nvar A = board.create('curve',\n [function(y){return y;},\n function(y){return a;},\n p, q]);\nvar A_dash = board.create('curve',\n [function(y){return y;},\n function(y){return a;},\n 0, q+1], {dash:2});\nvar Q = board.create('curve',\n [function(y){return q;},\n function(y){return y;},\n a, f]);\nvar Q_dash = board.create('curve',\n [function(y){return q;},\n function(y){return y;},\n 0, f+1], {dash:2});\n\nvar f = [];\nf.push(ln);\nf.push(A);\nvar area = board.create('curve', [[], []], {color: 'blue', opacity: 0.4});\narea.updateDataArray = function () {\n // start and end\n var left = p, right = q,\n x, y, curve;\n x = [left];\n y = [f[0].Y(left)];\n// go through f[0] forwards\n curve = f[0]; \n for (i = 0; i < curve.numberPoints; i++) {\n x.push(curve.points[i].usrCoords[1]);\n y.push(curve.points[i].usrCoords[2]);\n }\n// walk backwards through f[1]\n curve = f[1];\n for (i = curve.numberPoints - 1; i >= 0; i--) {\n x.push(curve.points[i].usrCoords[1]);\n y.push(curve.points[i].usrCoords[2]);\n }\n// close the curve\n this.dataX = x;\n this.dataY = y;\n};\nreturn makeboard; // update the board", "type": "html", "parameters": [], "language": "javascript"}}, "variables": {"d": {"description": "", "templateType": "anything", "name": "d", "definition": "random(-3..5 except 0 except a except b)", "group": "Ungrouped variables"}, "c": {"description": "", "templateType": "randrange", "name": "c", "definition": "random(2..5#1)", "group": "Ungrouped variables"}, "gcd1": {"description": "", "templateType": "anything", "name": "gcd1", "definition": "gcd(b*q*(s*q+2*t),2)", "group": "Unnamed group"}, "p": {"description": "", "templateType": "anything", "name": "p", "definition": "(1/c)e^((a-d)/b)", "group": "Ungrouped variables"}, "k": {"description": "", "templateType": "anything", "name": "k", "definition": "4*q*((s*q/2+t)*(d-a)-b*(q*s/4+t))", "group": "Unnamed group"}, "gcd3a": {"description": "", "templateType": "anything", "name": "gcd3a", "definition": "gcd(b*s,4c^2)", "group": "Unnamed group"}, "q": {"description": "", "templateType": "anything", "name": "q", "definition": "random(ceil(p)..9)", "group": "Ungrouped variables"}, "t": {"description": "", "templateType": "anything", "name": "t", "definition": "random(1..5 except s)", "group": "Ungrouped variables"}, "s": {"description": "", "templateType": "randrange", "name": "s", "definition": "random(1..5#1)", "group": "Ungrouped variables"}, "gcd3b": {"description": "", "templateType": "anything", "name": "gcd3b", "definition": "gcd(a-d,b)", "group": "Unnamed group"}, "a": {"description": "", "templateType": "randrange", "name": "a", "definition": "random(0..2#1)", "group": "Ungrouped variables"}, "gcd4": {"description": "", "templateType": "anything", "name": "gcd4", "definition": "gcd(b*t,c)", "group": "Unnamed group"}, "gcd0": {"description": "", "templateType": "anything", "name": "gcd0", "definition": "gcd((s*q+2*t)*d*q,2)", "group": "Unnamed group"}, "b": {"description": "", "templateType": "anything", "name": "b", "definition": "random(2..5 except a)", "group": "Ungrouped variables"}, "gcd2": {"description": "", "templateType": "anything", "name": "gcd2", "definition": "gcd(k,4)", "group": "Unnamed group"}}, "preamble": {"js": "", "css": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"licence": "None specified", "description": "

I created this question, and every other question in Multiple Integration, for my dissertation `Computer-Aided Assessment of Multiple Integration'.

"}, "extensions": ["jsxgraph"], "tags": [], "ungrouped_variables": ["a", "b", "c", "d", "p", "q", "s", "t"], "name": "3. Change of Type (2 to 1)", "parts": [{"scripts": {}, "shuffleChoices": false, "matrix": ["0", "1"], "displayColumns": 0, "minMarks": 0, "type": "1_n_2", "distractors": ["", ""], "showFeedbackIcon": true, "choices": ["

Type 1

", "

Type 2

"], "variableReplacementStrategy": "originalfirst", "displayType": "radiogroup", "prompt": "

Of which type is this integral?

", "showCorrectAnswer": true, "variableReplacements": [], "marks": 0, "maxMarks": 0}, {"showFeedbackIcon": true, "scripts": {}, "gaps": [{"checkingaccuracy": 0.001, "scripts": {}, "expectedvariablenames": [], "showpreview": true, "type": "jme", "showFeedbackIcon": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "checkvariablenames": false, "checkingtype": "absdiff", "showCorrectAnswer": true, "variableReplacements": [], "marks": "1", "vsetrange": [0, 1], "answer": "1/{c}e^((y-{d})/{b})"}, {"notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "scripts": {}, "maxValue": "{q}", "type": "numberentry", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "mustBeReduced": false, "minValue": "{q}"}, {"notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "scripts": {}, "maxValue": "{a}", "type": "numberentry", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "mustBeReduced": false, "minValue": "{a}"}, {"checkingaccuracy": 0.001, "scripts": {}, "expectedvariablenames": [], "showpreview": true, "type": "jme", "showFeedbackIcon": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "checkvariablenames": false, "checkingtype": "absdiff", "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "vsetrange": [0, 1], "answer": "{b}ln{c*q}+{d}"}], "variableReplacementStrategy": "originalfirst", "prompt": "

Change the order of integration. What are the new limits?

\n

\\[  \\int_c^d \\int_a^b f(x,y) \\, \\mathrm{d}x \\, \\mathrm{d}y\\]

\n

$a=\\,$[[0]] $b=\\,$[[1]]

\n

$c=\\,$[[2]] $d=\\,$[[3]]

", "showCorrectAnswer": true, "variableReplacements": [], "type": "gapfill", "marks": 0}, {"checkingaccuracy": 0.001, "scripts": {}, "expectedvariablenames": [], "showpreview": true, "type": "jme", "checkvariablenames": false, "showFeedbackIcon": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "prompt": "

Now evaluate the integral in the type you changed it to if

\n

\\[ f(x,y)=\\simplify{{s}x} + \\var{t} .\\]

", "checkingtype": "absdiff", "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "vsetrange": [0, 1], "answer": "{b*q*(s*q+2*t)/gcd1}/{2/gcd1}ln{c*q}+{k/gcd2}/{4/gcd2} + {b*s/gcd3a}/{4c^2/gcd3a}e^({2*(a-d)/gcd3b}/{b/gcd3b}) + {b*t/gcd4}/{c/gcd4}e^({(a-d)/gcd3b}/{b/gcd3b})"}], "rulesets": {}, "advice": "

a)

\n

     This integral is type 2, because the order of integration is $y$, then $x$.

\n

b)

\n

     Sketch the graph, looks like this:

\n

     From looking at the graph we can see that the curve $y=\\simplify{{b}ln({c}x)+{d}}$, which was the upper limit for $y$ in type 2, is now the lower limit for $x$ in type 1.  So we need to             make $x$ the subject of the equation:

\n

     \\begin{align}
     \\simplify{{b}ln({c}x)+{d}}=\\,& y \\\\
     \\var{b}\\ln(\\var{c}x)           =\\,& \\simplify{y-{d}} \\\\
     \\ln(\\var{c}x)                      =\\,& \\simplify{(y-{d})/{b}} \\\\
     \\var{c}x                            =\\,& e^{\\simplify{(y-{d})/{b}}} \\\\
     x                                       =\\,& \\frac{1}{\\var{c}}e^{\\simplify{(y-{d})/{b}}}.
     \\end{align}

\n

     The upper limit is just the straight line: $x=\\var{q}$.

\n

\n

     Now for $y$ the bottom limit is simply the line $y=\\var{a}$, and the top limit is the point of intersection between $y=\\simplify{{b}ln({c}x)+{d}}$ and $x=\\var{q}$, so                                     $y=\\simplify{{b}ln{c*q}+{d}}$.

\n

\n

     Finally, make sure you also swap $\\mathrm{d}x \\, \\mathrm{d}y$ since the integral is now in type 1.

\n

\n

     Answer:

\n

\\[ \\int_\\var{a}^{\\simplify{{b}ln{c*q}+{d}}} \\int_{\\frac{1}{\\var{c}}e^{\\simplify[fractionNumbers]{(y-{d})/{b}}}}^{\\var{q}} f(x,y) \\, \\mathrm{d}x \\, \\mathrm{d}y \\]

\n

\n

c)

\n

\\begin{align}
\\int_\\var{a}^{\\simplify{{b}ln{c*q}+{d}}} \\int_{\\frac{1}{\\var{c}}e^{\\simplify{(y-{d})/{b}}}}^{\\var{q}}   \\simplify{{s}x}+\\var{t}   \\, \\mathrm{d}x \\, \\mathrm{d}y

&=\\int_\\var{a}^{\\simplify{{b}ln{c*q}+{d}}}   \\simplify{{s}/{2}x^2}+\\simplify{{t}x}   \\, \\bigg|_{x=\\frac{1}{\\var{c}}e^{\\simplify{(y-{d})/{b}}}}^{x=\\var{q}} \\, \\mathrm{d}y
\\\\
&=\\int_\\var{a}^{\\simplify{{b}ln{c*q}+{d}}}   \\simplify[fractionNumbers]{{s*q^2/2}}+\\var{t*q} - \\simplify[fractionNumbers]{{s/2}}\\cdot\\frac{1}{\\var{c}^2}e^{2\\simplify{(y-{d})/{b}}}-\\frac{\\var{t}}{\\var{c}}e^{\\simplify{(y-{d})/{b}}}   \\, \\mathrm{d}y
\\\\
&=\\int_\\var{a}^{\\simplify{{b}ln{c*q}+{d}}}   \\simplify[fractionNumbers]{{s*q^2/2+t*q}} - \\simplify[fractionNumbers]{{s/(2*c^2)}}e^{\\simplify{2*(y-{d})/{b}}}-\\simplify[fractionNumbers]{{t/c}}e^\\simplify{(y-{d})/{b}} \\, \\mathrm{d}y
\\\\
\\end{align}

\n

\n

\\begin{align}
\\int_\\var{a}^{\\simplify{{b}ln{c*q}+{d}}}  \\simplify[fractionNumbers]{{s*q^2/2+t*q}} - \\simplify[fractionNumbers]{{s/(2*c^2)}}e^{\\simplify{2*(y-{d})/{b}}}-\\simplify[fractionNumbers]{{t/c}}e^\\simplify{(y-{d})/{b}}   \\, \\mathrm{d}y

&=\\simplify[fractionNumbers]{{s*q^2/2+t*q}}y - \\simplify[fractionNumbers]{{b*s/(4c^2)}}e^{\\simplify{2*(y-{d})/{b}}}-\\simplify[fractionNumbers]{{b*t/c}}e^\\simplify{(y-{d})/{b}} \\bigg|_{y=\\var{a}}^{y=\\simplify{{b}ln{c*q}+{d}}}
\\\\
&=\\simplify[fractionNumbers]{{(s*q/2+t)*b*q}ln{c*q}} + \\simplify{({(s*q+2*t)*d*q/gcd0}/{2/gcd0})} - \\simplify[fractionNumbers]{{b*s/(4c^2)}}(\\var{c*q})^2-\\simplify[fractionNumbers]{{b*t/c}}\\cdot\\var{c*q} - \\simplify[fractionNumbers]{{(s*q/2+t)*a*q}} + \\simplify[fractionNumbers]{{b*s/(4c^2)}}\\simplify{e^({2*(a-d)}/{b})} + \\simplify[fractionNumbers]{{b*t/c}}\\simplify{e^({a-d}/{b})}
\\\\
&=\\simplify[fractionNumbers]{{(s*q/2+t)*b*q}ln{c*q}} + \\simplify{({k/gcd2}/{4/gcd2})} + \\simplify[fractionNumbers]{{b*s/(4c^2)}}\\simplify{e^({2*(a-d)}/{b})} + \\simplify[fractionNumbers]{{b*t/c}}\\simplify{e^({a-d}/{b})}
\\end{align}

", "statement": "

Consider the integral

\n

\\[ \\int_{\\frac{1}{\\var{c}}\\simplify{e^({a-d}/{b})}}^{\\var{q}}  \\int_\\var{a}^{\\simplify{{b}ln({c}x)+{d}}} f(x,y) \\, \\mathrm{d}y \\, \\mathrm{d}x \\,.\\]

\n

The domain of integration is shown below.

\n

{plot()}

", "variable_groups": [{"variables": ["gcd0", "gcd1", "k", "gcd2", "gcd3a", "gcd3b", "gcd4"], "name": "Unnamed group"}], "type": "question", "contributors": [{"name": "Nicholas Barker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1915/"}]}]}], "contributors": [{"name": "Nicholas Barker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1915/"}]}